CS 331: Artificial Intelligence Propositional Logic 2

Review of Last Time

- |= means "logically follows"
- |-_i means "can be derived from"
- If your inference algorithm derives only things that follow logically from the KB, the inference is sound
- If everything that follows logically from the KB can be derived using your inference algorithm, the inference is complete

	I	nfe	rer	nce	: N	lod	el	Ch	eck	cing	5	
•	Supp	pose	we wa	ant to	knov	v if K	B =	$\neg P_{1,2}$	2?			
•	In th	ie 3 n	nodel	s in w	hich	KB is	s true	, ¬₽	_{1,2} is a	also ti	rue	
B _{1,1}	B _{2,1}	P _{1,1}	P _{1,2}	P _{2,1}	P _{2,2}	P _{3,1}	R ₁	R ₂	R ₃	R ₄	R ₅	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

Logical equivalence

- Intuitively: two sentences α and β are logically equivalent (i.e. α = β) if they are true in the same set of models
- Formally: $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$
- Can prove this with truth tables

Standard Logic Equivalences

 $\begin{array}{l} (\alpha \land \beta) \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\ (\alpha \lor \beta) \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\ ((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\ ((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\ \neg (\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg (\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta) \quad \text{de Morgan} \\ \neg (\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta) \quad \text{de Morgan} \\ (\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor \\ (\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land \end{array}$

8

Validity

- A sentence is valid if it is true in all models
- E.g. $P \lor \neg P$ is valid
- Valid sentences = Tautologies
- Tautologies are vacuous

Deduction theorem

For any sentences α and β , $\alpha \models \beta$ iff the sentence ($\alpha \Rightarrow \beta$) is valid

Exercise

• Is the following sentence valid?

$$(A \Rightarrow B) \lor (\neg A \Rightarrow \neg B)$$

Proof methods

How do we prove that α can be entailed from the KB?

- 1. Model checking e.g. check that α is true in all models in which KB is true
- 2. Inference rules

If it is October, there will not be a football game at OSU	
If it is October and it is Saturday, I will be in Corvallis	
If it doesn't rain or if there is a football game, I will ride my bike to OSU	
Today is Saturday and it is October	
If I am in Corvallis, it will not rain	

