
1

1

CS 331: Artificial Intelligence

Adversarial Search

2

Games we will consider

• Deterministic

• Discrete states and decisions

• Finite number of states and decisions

• Perfect information i.e. fully observable

• Two agents whose actions alternate

• Their utility values at the end of the game are

equal and opposite (we call this zero-sum)

“It’s not enough for me to win, I have to see

my opponents lose”

Which of these games fit the

description?

Two-player, zero-sum, discrete, finite, deterministic games of perfect information

4

What makes games hard?

• Hard to solve e.g. Chess has a search graph

with about 1040 distinct nodes

• Need to make a decision even though you

can’t calculate the optimal decision

• Need to make a decision with time limits

5

Formal Definition of a Game

A quintuplet (S, I, Succ(), T, U):

S Finite set of states. States include information on which player’s

turn it is to move.

I Initial board position and which player is first to move

Succ() Takes a current state and returns a list of (move,state) pairs, each

indicating a legal move and the resulting state

T Terminal test which determines when the game ends. Terminal

states: subset of S in where the game has ended

U Utility function (aka objective function or payoff function): maps

from terminal state to real number

6

Nim

Many different variations. We’ll do this one.

• Start with 9 beaver logos

• In one player’s turn, that player can

remove 1, 2 or 3 beaver logos

• The person who takes the last beaver logo

wins

2

7

Nim

8

Formal Definition of Nim

A quintuplet (S, I, Succ(), T, U):

S Max(IIIII), Max(III), Max(II), Max(I)

Min(IIII), Min(III), Min(II), Min(I)

I Max(IIIII)

Succ() Succ(Max(IIIII)) = {Min(IIII),Min(III),Min(II)} Succ(Min(IIII)) = {Max(III),Max(II),Max(I)}

Succ(Max(III)) = {Min(II),Min(I)} Succ(Min(III)) = {Max(II),Max(I)}

Succ(Max(II)) = {Min(I)} Succ(Min(II)) = {Max(I)}

T Max(I), Max(II), Max(III), Min(I), Min(II), Min(III)

U Utility(Max(I) or Max(II) or Max(III)) = +1,

Utility(Min(I) or Min(II) or Min(III)) = -1

Notation: Max(IIIII)

matches leftWho’s move

Nim Game Tree
IIIII

IIII III II

III II I

II I I

-1II I

I

I

Max

Min

Max

Min

Max

Min

+1+1+1

-1

+1+1

-1

+1

-1-1

+1

-1 I

We’ll call the players Max and Min, with Max starting first 10

How to Use a Game Tree

• Max wants to maximize his utility

• Min wants to minimize Max’s utility

• Max’s strategy must take into account what

Min does since they alternate moves

• A move by Max or Min is called a ply

The Minimax Value of a Node

The minimax value of a node is the utility for

MAX of being in the corresponding state,

assuming that both players play optimally

from there to the end of the game

Minimax value maximizes worst-case outcome for MAX

)VALUE(-MINIMAXmax)(snSuccessorss

)VALUE(-MINIMAXmin)(snSuccessorss

)UTILITY(n

)VALUE(-MINIMAX n

If n is a MIN node

If n is a MAX node

If n is a terminal state

12

Nim Game Tree
IIIII

IIII III II

III II I

II I I

-1II I

I

I

Max

Min

Max

Min

Max

Min

+1+1+1

-1

+1+1

-1

+1

-1-1

+1

-1 I

3

13

Minimax Values in Nim Game Tree

IIIII

IIII III II

III II I

II I I

-1II I

I

I

Max

Min

Max

Min

Max

Min

+1+1+1

-1

+1+1

-1

+1

-1-1

+1

-1 I

+1

14

Minimax Values in Nim Game Tree

IIIII

IIII III II

III II I

II I I

-1II I

I

I

Max

Min

Max

Min

Max

Min

+1+1+1

-1

+1+1

-1

+1

-1-1

+1

-1 I

-1-1

+1

-1 -1

15

Minimax Values in Nim Game Tree

IIIII

IIII III II

III II I

II I I

-1II I

I

I

Max

Min

Max

Min

Max

Min

+1+1+1

-1

+1+1

-1

+1

-1-1

+1

-1 +1 I+1

-1

+1

-1

+1+1

+1

-1 -1

+1

16

Minimax Values in Nim Game Tree

IIIII

IIII III II

III II I

II I I

-1II I

I

I

Max

Min

Max

Min

Max

Min

+1+1+1

-1

+1+1

-1

+1

-1-1

+1

-1 +1 I+1

-1

+1

-1 -1

-1

+1+1

+1

-1 -1

+1

+1

17

Minimax Values in Nim Game Tree

IIIII

IIII III II

III II I

II I I

-1II I

I

I

Max

Min

Max

Min

Max

Min

+1+1+1

-1

+1+1

-1

+1

-1-1

+1

-1 +1 I+1

-1

+1

-1 -1

-1

+1+1

+1

-1 -1

+1

+1

+1

18

Minimax Values in Nim Game Tree

IIIII

IIII III II

III II I

II I I

-1II I

I

I

Max

Min

Max

Min

Max

Min

+1+1+1

-1

+1+1

-1

+1

-1-1

+1

-1 +1 I+1

-1

+1

-1 -1

-1

+1+1

+1

-1 -1

+1

+1

+1

Minimax decision at the root:

taking this action results in the

successor with highest

minimax value

4

19

Another Example

A

3 12 8 2 4 6 14 5 2

MIN

MAX

B C D

= Maximizing

player

= Minimizing

player

20

Another Example

A

3 12 8 2 4 6 14 5 2

MIN

MAX

B C D3 2 2

21

Another Example

A

3 12 8 2 4 6 14 5 2

MIN

MAX

B C D3 2 2

3

22

The MINIMAX Algorithm
function MINIMAX-DECISION(state) returns an action

inputs: state, current state in game

v ← MAX-VALUE(state)

return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)

v ← - Infinity

for a, s in SUCCESSORS(state) do

v ← MAX(v, MIN-VALUE(s))

return v

function MIN-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)

v ← Infinity

for a, s in SUCCESSORS(state) do

v ← MIN(v, MAX-VALUE(s))

return v

23

The MINIMAX algorithm

• Computes minimax decision from the current state

• Depth-first exploration of the game tree

• Time Complexity O(bm) where b=# of legal

moves, m=maximum depth of tree

• Space Complexity:

– O(bm) if all successors generated at once

– O(m) if only one successor generated at a time (each

partially expanded node remembers which successor to

generate next)

24

Minimax With 3 Players

(1,2,6) (4,2,3) (6,1,2) (7,4,1) (5,1,1) (1,5,2) (7,7,1) (5,4,5)

A

B

C

A

Now have a vector of utilities for players (A,B,C). All players maximize their

utilities. Note: In two-player, zero-sum games, we have a single value

because the values are always opposite.

5

25

Minimax With 3 Players

(1,2,6) (4,2,3) (6,1,2) (7,4,1) (5,1,1) (1,5,2) (7,7,1) (5,4,5)

A

B

C (1,2,6) (6,1,2) (1,5,2) (5,4,5)

26

Minimax With 3 Players

(1,2,6) (4,2,3) (6,1,2) (7,4,1) (5,1,1) (1,5,2) (7,7,1) (5,4,5)

A

B

C (1,2,6) (6,1,2) (1,5,2) (5,4,5)

(1,2,6) (1,5,2)

27

Minimax With 3 Players

(1,2,6) (4,2,3) (6,1,2) (7,4,1) (5,1,1) (1,5,2) (7,7,1) (5,4,5)

A

B

C (1,2,6) (6,1,2) (1,5,2) (5,4,5)

(1,2,6) (1,5,2)

(1,2,6)

28

Subtleties With Multiplayer Games

• Alliances can be made and broken

• For example, if A and B are weaker than C,

they can gang up on C

• But A and B can turn on each other once C

is weakened

• But society considers the player that breaks

the alliance to be dishonorable

29

Pruning

• Can we improve on the time complexity of

O(bm)?

• Yes if we prune away branches that cannot

possibly influence the final decision

Pruning in Nim
IIIII

IIII III II

III II I

II I I

-1II I

I

I

Max

Min

Max

Min

Max

Min

+1+1+1

-1

+1+1

-1

+1

-1-1

+1

-1 +1 I+1

-1

+1

-1 -1

-1

+1+1

+1

-1 -1

+1

+1

+1

If we know that the only two outcomes are +1 and -1,

what branches do we not need to explore when

minimax backtracks?

6

Pruning in Nim
IIIII

IIII III II

III II I

II I I

-1II I

I

I

Max

Min

Max

Min

Max

Min

+1+1+1

-1

+1+1

-1

+1

-1-1

+1

-1 +1 I+1

-1

+1

-1 -1

-1

+1+1

+1

-1 -1

+1

+1

+1

If we know that the only two outcomes are +1 and -1,

what branches do we not need to explore when

minimax backtracks? 32

Pruning in Nim
IIIII

IIII III II

III II I

II I I

-1II I

I

I

Max

Min

Max

Min

Max

Min

+1+1+1

-1

+1+1

-1

+1

-1-1

+1

-1 +1 I+1

-1

+1

-1 -1

-1

+1+1

+1

-1 -1

+1

+1

+1

What happens if we have more than just two

outcomes?

33

Pruning Intuition (General Case)

MAX

MIN

5 10 1

5 ≤1

Suppose we just went down this

branch. We know that the minimax

value of its parent will be ≤ 1

The max player will never

choose the right subtree

once it knows that it is

upper bounded by 1

34

Pruning Example

A

3 12 8 2 14 5 2

B C D

x y

MINIMAX-VALUE(root)

= max(min(3,12,8),min(2,x,y),min(14,5,2))

= max(3,min(2,x,y),2)

= max(3,z,2) where z ≤ 2

= 3

MAX

MIN

35

Pruning Intuition

Remember that minimax search is DFS.

At any one time, we only have to consider the nodes along a single path in the
tree

In general, let:

•  = highest minimax value of all of the MAX player’s choices expanded on
current path (best score for MAX so far)

•  = lowest minimax value of all of the MIN player’s choices expanded on
current path (best score for MIN so far)

• If at a MIN player node, prune if minimax value of node ≤ 

• If at a MAX player node, prune if minimax value of node ≥ 

36

ALPHA-BETA Pseudocode

function ALPHA-BETA-SEARCH(state) returns an action

inputs: state, current state in game

v ← MAX-VALUE(state, -∞, +∞)

return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state, , ) returns a utility value

inputs: state, current state in game

, the value of the best alternative for MAX along the path to state

, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)

v ← -∞

for a, s in SUCCESSORS(state) do

v ← MAX(v, MIN-VALUE(s, , ))

if v ≥  then return v

 ← MAX(, v)

return v

7

37

ALPHA-BETA Pseudocode

function MIN-VALUE(state, , ) returns a utility value

inputs: state, current state in game

, the value of the best alternative for MAX along the path to state

, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)

v ← +∞

for a, s in SUCCESSORS(state) do

v ← MIN(v, MAX-VALUE(s, , ))

if v ≤  then return v

 ← MIN(, v)

return v

38

Illustrating the Pseudocode

• In the example to follow, the notation

(-∞, +∞) represents the (, ) values for the
corresponding node

• This example is intended to illustrate how the
actual implementation of Alpha-Beta pruning
works

A(-∞, +∞)

B C D

= Maximizing

player

= Minimizing

player

Alpha-Beta Pruning Example

A

3

(-∞, +∞)

(-∞, 3) B C D

A

3 12

(-∞, +∞)

(-∞, 3) B C D

A

3 12 8

(-∞, +∞)

(-∞, 3) B C D

b)

c) d)

A(-∞, +∞)

(-∞, +∞) B C D

a)

Alpha-Beta Pruning Example

A

3 12 8

(3, +∞)

B C D

f)

g) h)

e)

A

3 12 8

(3, +∞)

B C D(3, +∞)

A

3 12 8 2

(3, +∞)

B C D(3, +∞)

A

3 12 8 2

(3, +∞)

B C D

Pruning happens: 2 ≤  (=3)

Alpha-Beta Pruning Example

j)

k) l)

i)

A

3 12 8 2

(3, +∞)

B C D(3, +∞)

A

3 12 8 2 14

(3, +∞)

B C D(3, 14)

A

3 12 8 2 14 5

(3, +∞)

B C D(3, 5)

A

3 12 8 2 14 5

(3, +∞)

B C D

2

Pruning happens: 2 ≤  (=3) but not much

is pruned since we’re at the bottom

42

Effectiveness of Alpha-Beta

• Depends on order of successors

• Best case: Alpha-Beta reduces complexity

from O(bm) for minimax to O(bm/2)

• This means Alpha-Beta can lookahead

about twice as far as minimax in the same

amount of time

8

43

Implementation Details

• In games we have the problem of

transposition

• Transposition means different permutations

of the move sequence that end up in the

same position

• Results in lots of repeated states

• Use a transposition table to remember the

states you’ve seen (similar to closed list)

44

What you should know

• Be able to draw up a game tree

• Know how the Minimax algorithm works

• Know how the Alpha-Beta algorithm works

• Be able to do both algorithms by hand

