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CS 331: Artificial Intelligence

Adversarial Search
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Games we will consider

• Deterministic

• Discrete states and decisions

• Finite number of states and decisions

• Perfect information i.e. fully observable

• Two agents whose actions alternate

• Their utility values at the end of the game are 

equal and opposite (we call this zero-sum)

“It’s not enough for me to win, I have to see 

my opponents lose”

Which of these games fit the 

description?

Two-player, zero-sum, discrete, finite, deterministic games of perfect information
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What makes games hard?

• Hard to solve e.g. Chess has a search graph 

with about 1040 distinct nodes

• Need to make a decision even though you 

can’t calculate the optimal decision

• Need to make a decision with time limits
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Formal Definition of a Game

A quintuplet (S, I, Succ(), T, U):

S Finite set of states. States include information on which player’s 

turn it is to move.

I Initial board position and which player is first to move

Succ() Takes a current state and returns a list of (move,state) pairs, each 

indicating a legal move and the resulting state 

T Terminal test which determines when the game ends.  Terminal 

states: subset of S in where the game has ended

U Utility function (aka objective function or payoff function): maps 

from terminal state to real number
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Nim

Many different variations.  We’ll do this one.

• Start with 9 beaver logos

• In one player’s turn, that player can 

remove 1, 2 or 3 beaver logos

• The person who takes the last beaver logo 

wins



2

7

Nim
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Formal Definition of Nim

A quintuplet (S, I, Succ(), T, U):

S Max(IIIII), Max(III), Max(II), Max(I)

Min(IIII), Min(III), Min(II), Min(I)

I Max(IIIII)

Succ() Succ(Max(IIIII)) = {Min(IIII),Min(III),Min(II)}     Succ(Min(IIII)) = {Max(III),Max(II),Max(I)}

Succ(Max(III)) = {Min(II),Min(I)}                         Succ(Min(III)) = {Max(II),Max(I)}

Succ(Max(II)) = {Min(I)}                                       Succ(Min(II)) = {Max(I)}

T Max(I), Max(II), Max(III), Min(I), Min(II), Min(III)

U Utility(Max(I) or Max(II) or Max(III)) = +1, 

Utility(Min(I) or Min(II) or Min(III)) = -1  

Notation: Max(IIIII)

# matches leftWho’s move

Nim Game Tree
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We’ll call the players Max and Min, with Max starting first 10

How to Use a Game Tree

• Max wants to maximize his utility

• Min wants to minimize Max’s utility

• Max’s strategy must take into account what 

Min does since they alternate moves

• A move by Max or Min is called a ply

The Minimax Value of a Node

The minimax value of a node is the utility for 

MAX of being in the corresponding state, 

assuming that both players play optimally

from there to the end of the game

Minimax value maximizes worst-case outcome for MAX

)VALUE(-MINIMAXmax )( snSuccessorss

)VALUE(-MINIMAXmin )( snSuccessorss

)UTILITY(n

)VALUE(-MINIMAX n

If n is a MIN node

If n is a MAX node

If n is a terminal state
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Nim Game Tree
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Minimax Values in Nim Game Tree
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Minimax Values in Nim Game Tree
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Minimax Values in Nim Game Tree
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Minimax Values in Nim Game Tree
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Minimax Values in Nim Game Tree
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Minimax Values in Nim Game Tree
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Minimax decision at the root: 

taking this action results in the 

successor with highest 

minimax value
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Another Example

A

3 12 8 2 4 6 14 5 2

MIN

MAX

B C D

= Maximizing 

player

= Minimizing 

player
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Another Example

A

3 12 8 2 4 6 14 5 2

MIN

MAX

B C D3 2 2
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Another Example

A

3 12 8 2 4 6 14 5 2

MIN

MAX

B C D3 2 2

3
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The MINIMAX Algorithm
function MINIMAX-DECISION(state) returns an action

inputs: state, current state in game

v ← MAX-VALUE(state)

return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)

v ← - Infinity

for a, s in SUCCESSORS(state) do

v ← MAX(v, MIN-VALUE(s))

return v

function MIN-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)

v ← Infinity

for a, s in SUCCESSORS(state) do

v ← MIN(v, MAX-VALUE(s))

return v
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The MINIMAX algorithm

• Computes minimax decision from the current state

• Depth-first exploration of the game tree

• Time Complexity O(bm) where b=# of legal 

moves, m=maximum depth of tree

• Space Complexity:

– O(bm) if all successors generated at once

– O(m) if only one successor generated at a time (each 

partially expanded node remembers which successor to 

generate next)
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Minimax With 3 Players

(1,2,6) (4,2,3) (6,1,2) (7,4,1) (5,1,1) (1,5,2) (7,7,1) (5,4,5)

A

B

C

A

Now have a vector of utilities for players (A,B,C).  All players maximize their 

utilities.  Note: In two-player, zero-sum games, we have a single value 

because the values are always opposite.
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Minimax With 3 Players

(1,2,6) (4,2,3) (6,1,2) (7,4,1) (5,1,1) (1,5,2) (7,7,1) (5,4,5)

A

B

C (1,2,6) (6,1,2) (1,5,2) (5,4,5)
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Minimax With 3 Players

(1,2,6) (4,2,3) (6,1,2) (7,4,1) (5,1,1) (1,5,2) (7,7,1) (5,4,5)

A

B

C (1,2,6) (6,1,2) (1,5,2) (5,4,5)

(1,2,6) (1,5,2)
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Minimax With 3 Players

(1,2,6) (4,2,3) (6,1,2) (7,4,1) (5,1,1) (1,5,2) (7,7,1) (5,4,5)

A

B

C (1,2,6) (6,1,2) (1,5,2) (5,4,5)

(1,2,6) (1,5,2)

(1,2,6)
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Subtleties With Multiplayer Games

• Alliances can be made and broken

• For example, if A and B are weaker than C, 

they can gang up on C

• But A and B can turn on each other once C 

is weakened

• But society considers the player that breaks 

the alliance to be dishonorable
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Pruning

• Can we improve on the time complexity of 

O(bm)?

• Yes if we prune away branches that cannot 

possibly influence the final decision

Pruning in Nim
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If we know that the only two outcomes are +1 and -1, 

what branches do we not need to explore when 

minimax backtracks?
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Pruning in Nim
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If we know that the only two outcomes are +1 and -1, 

what branches do we not need to explore when 

minimax backtracks? 32

Pruning in Nim
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What happens if we have more than just two 

outcomes?
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Pruning Intuition (General Case)

MAX

MIN

5 10 1

5 ≤1

Suppose we just went down this 

branch.  We know that the minimax 

value of its parent will be ≤ 1

The max player will never 

choose the right subtree 

once it knows that it is 

upper bounded by 1
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Pruning Example

A

3 12 8 2 14 5 2

B C D

x y

MINIMAX-VALUE(root) 

= max(min(3,12,8),min(2,x,y),min(14,5,2))

= max(3,min(2,x,y),2)

= max(3,z,2) where z ≤ 2

= 3

MAX

MIN
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Pruning Intuition

Remember that minimax search is DFS. 

At any one time, we only have to consider the nodes along a single path in the 
tree

In general, let:

•  = highest minimax value of all of the MAX player’s choices expanded on 
current path (best score for MAX so far)

•  = lowest minimax value of all of the MIN player’s choices expanded on 
current path (best score for MIN so far)

• If at a MIN player node, prune if minimax value of node ≤ 

• If at a MAX player node, prune if minimax value of node ≥ 
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ALPHA-BETA Pseudocode

function ALPHA-BETA-SEARCH(state) returns an action

inputs: state, current state in game

v ← MAX-VALUE(state, -∞, +∞)

return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state, , ) returns a utility value

inputs: state, current state in game

, the value of the best alternative for MAX along the path to state

, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)

v ← -∞

for a, s in SUCCESSORS(state) do

v ← MAX(v, MIN-VALUE(s, , ))

if v ≥  then return v

 ← MAX(, v)

return v
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ALPHA-BETA Pseudocode

function MIN-VALUE(state, , ) returns a utility value

inputs: state, current state in game

, the value of the best alternative for MAX along the path to state

, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)

v ← +∞

for a, s in SUCCESSORS(state) do

v ← MIN(v, MAX-VALUE(s, , ))

if v ≤  then return v

 ← MIN(, v)

return v
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Illustrating the Pseudocode

• In the example to follow, the notation

(-∞, +∞) represents the (, ) values for the 
corresponding node

• This example is intended to illustrate how the 
actual implementation of Alpha-Beta pruning 
works

A(-∞, +∞)

B C D

= Maximizing 

player

= Minimizing 

player

Alpha-Beta Pruning Example

A

3

(-∞, +∞)

(-∞, 3) B C D

A

3 12

(-∞, +∞)

(-∞, 3) B C D

A

3 12 8

(-∞, +∞)

(-∞, 3) B C D

b)

c) d)

A(-∞, +∞)

(-∞, +∞) B C D

a)

Alpha-Beta Pruning Example

A

3 12 8

(3, +∞)

B C D

f)

g) h)

e)

A

3 12 8

(3, +∞)

B C D(3, +∞)

A

3 12 8 2

(3, +∞)

B C D(3, +∞)

A

3 12 8 2

(3, +∞)

B C D

Pruning happens: 2 ≤  (=3)

Alpha-Beta Pruning Example

j)

k) l)

i)

A

3 12 8 2

(3, +∞)

B C D(3, +∞)

A

3 12 8 2 14

(3, +∞)

B C D(3, 14)

A

3 12 8 2 14 5

(3, +∞)

B C D(3, 5)

A

3 12 8 2 14 5

(3, +∞)

B C D

2

Pruning happens: 2 ≤  (=3) but not much 

is pruned since we’re at the bottom
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Effectiveness of Alpha-Beta

• Depends on order of successors

• Best case: Alpha-Beta reduces complexity 

from O(bm) for minimax to O(bm/2)

• This means Alpha-Beta can lookahead 

about twice as far as minimax in the same 

amount of time
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Implementation Details

• In games we have the problem of 

transposition

• Transposition means different permutations 

of the move sequence that end up in the 

same position

• Results in lots of repeated states

• Use a transposition table to remember the 

states you’ve seen (similar to closed list)

44

What you should know

• Be able to draw up a game tree

• Know how the Minimax algorithm works

• Know how the Alpha-Beta algorithm works

• Be able to do both algorithms by hand


