CS 331: Artificial Intelligence Bayesian Networks

Thanks to Andrew Moore for some course material

1

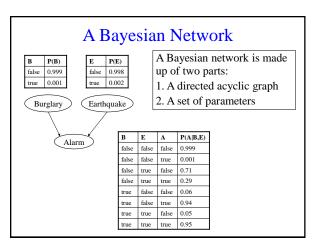
Why This Matters

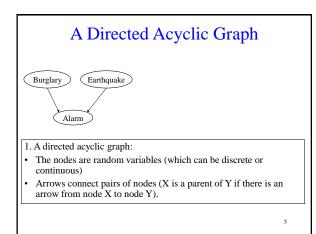
- Bayesian networks have been one of the most important contributions to the field of AI in the last 10-20 years
- Provide a way to represent knowledge in an uncertain domain and a way to reason about this knowledge
- Many applications: medicine, factories, help desks, spam filtering, etc.

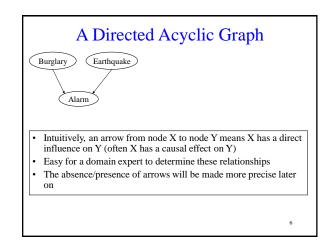
2

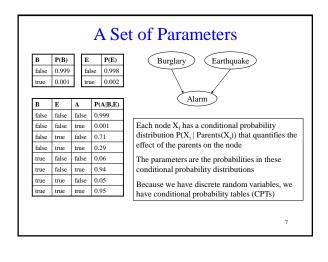
Outline

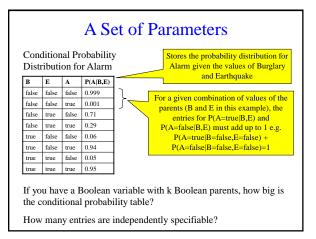
- 1. Brief Introduction to Bayesian networks
- 2. Semantics of Bayesian networks
 - Bayesian networks as a full joint probability distribution
 - Bayesian networks as encoding conditional independence relationships

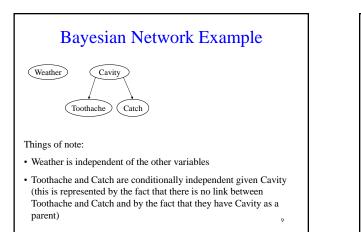




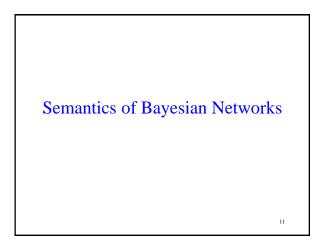


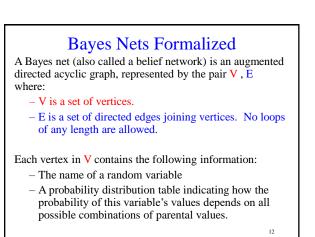






Coin	P(Coin)	Coin	Card	P(Card Coin)	Card	Candy	P(Candy Card
tails	0.5	tails	black	0.6	black	1	0.5
heads	0.5	tails	red	0.4	black	2	0.2
		heads	black	0.3	black	3	0.3
		heads	red	0.7	red	1	0.1
					red	2	0.3
					red	3	0.6
	What	does t	he DA	AG for this Ba	ayes ne	et look li	ke?





Semantics of Bayesian Networks

Two ways to view Bayes nets:

- 1. A representation of a joint probability distribution
- 2. An encoding of a collection of conditional independence statements

13

A Representation of the Full Joint Distribution

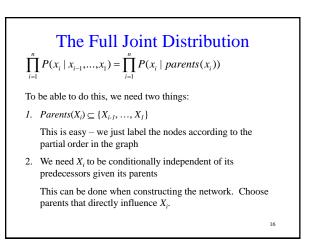
- We will use the following abbrevations:
 - $P(x_1, ..., x_n)$ for $P(X_1 = x_1 \land ... \land X_n = x_n)$ - *parents*(X_i) for the values of the parents of X_i
 - = parents(X_i) for the values of the parents of .

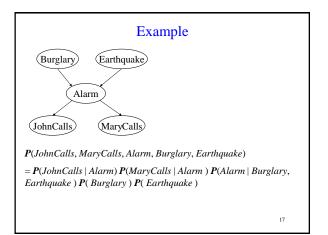
14

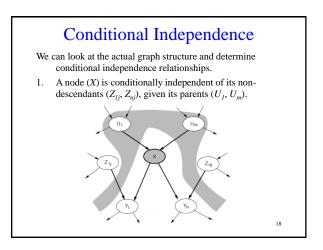
• From the Bayes net, we can calculate:

 $P(x_1,...,x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$

 $\begin{aligned} & \text{P}(x_{1},...,x_{n}) \\ & = P(x_{n} \mid x_{n-1},...,x_{1})P(x_{n-1},...,x_{1}) \quad (\text{chain Rule}) \\ & = P(x_{n} \mid x_{n-1},...,x_{1})P(x_{n-1} \mid x_{n-2},...,x_{1})P(x_{n-2},...,x_{1}) \quad (\text{chain Rule}) \\ & = P(x_{n} \mid x_{n-1},...,x_{1})P(x_{n-1} \mid x_{n-2},...,x_{1})P(x_{n-2} \mid x_{n-2})P(x_{1}) \\ & = P(x_{n} \mid x_{n-1},...,x_{1})P(x_{n-1} \mid x_{n-2},...,x_{1})P(x_{1},...,x_{1}) \quad (\text{chain Rule}) \\ & = P(x_{n} \mid x_{n-1},...,x_{1})P(x_{n-1} \mid x_{n-2},...,x_{1})P(x_{1},...,x_{1}) \quad (\text{chain Rule}) \\ & = P(x_{n} \mid x_{n-1},...,x_{1})P(x_{n-1} \mid x_{n-2},...,x_{1})P(x_{1},...,x_{1}) \quad (\text{chain Rule}) \\ & = P(x_{n} \mid x_{n-1},...,x_{1})P(x_{n-1} \mid x_{n-2},...,x_{1})P(x_{1},...,x_{1})P(x_{1},...,x_{n}) \quad (\text{chain Rule}) \\ & = P(x_{n} \mid x_{n-1},...,x_{n})P(x_{n-1} \mid x_{n-2},...,x_{n})P(x_{1},...,x_{n}) \quad (\text{chain Rule}) \\ & = P(x_{n} \mid x_{n-1},...,x_{n})P(x_{n-1} \mid x_{n-2},...,x_{n})P(x_{n-1} \mid x_{n-2},..$







Conditional Independence

- Previously, we conditioned on either the parent values or the values of the nodes in the Markov blanket
- There is a much more general topological criterion called d-separation
- d-separation determines whether a set of nodes *X* is independent of another set *Y* given a third set *E*
- You should use d-separation for determining conditional independence

D-separation

- We will use the notation I(X, Y | E) to mean that X and Y are conditionally independent given E
- Theorem [Verma and Pearl 1988]: If a set of evidence variables E d-separates X and Y in the Bayesian Network's graph, then I(X, Y | E)
- d-separation can be determined in linear time using a DFS-like algorithm

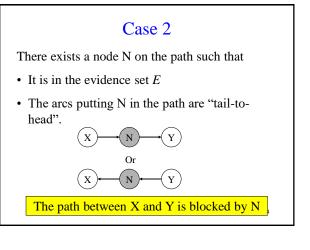
21

D-separation

- Let evidence nodes E ⊆ V (where V are the vertices or nodes in the graph), and X and Y be distinct nodes in V E.
- We say *X* and *Y* are d-separated by *E* in the Bayesian network if every undirected path between *X* and *Y* is blocked by *E*.
- What does it mean for a path to be blocked? There are 3 cases...

22

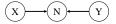
20



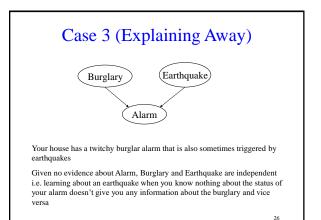
Case 3

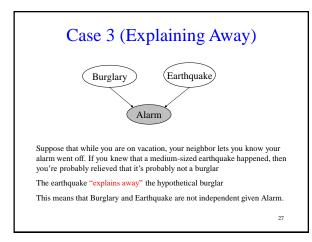
There exists a node N on the path such that

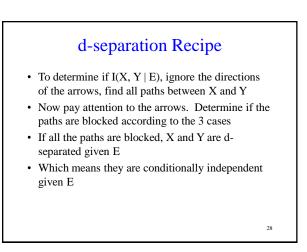
- It is NOT in the evidence set *E* (not shaded)
- · Neither are any of its descendants
- The arcs putting *N* in the path are "head-to-head".

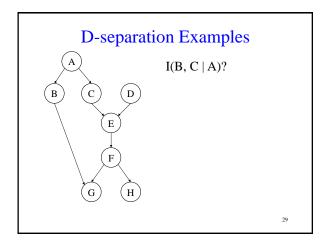


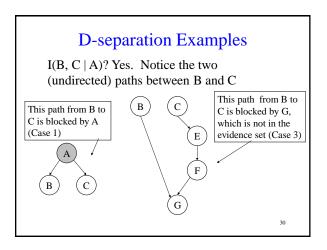
The path between X and Y is blocked by N (Note N is not in the evidence set)

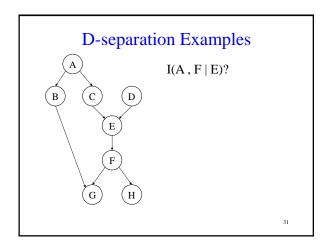


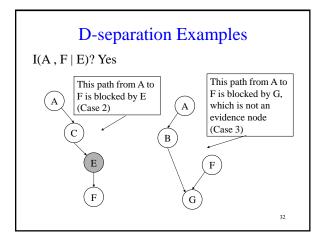


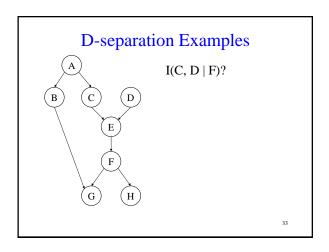


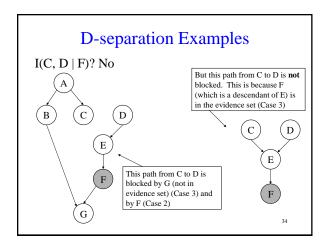


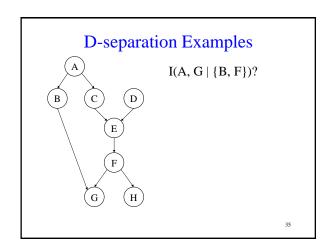


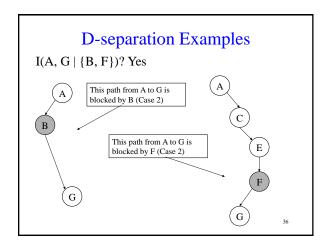


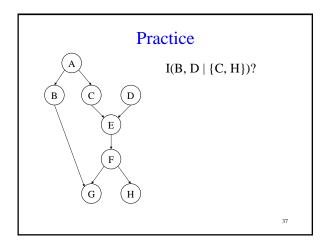












Conditional Independence

- Note: D-separation only finds random variables that are conditionally independent based on the topology of the network
- Some random variables that are not d-separated may still be conditionally independent because of the probabilities in their CPTs

38

What You Should Know

- How to compute the joint probability distribution from a Bayesian network
- How to determine conditional independence relationships using d-separation

39