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CS 331: Artificial Intelligence

Game Theory I
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Prisoner’s Dilemma

You and your partner have both been caught 

red handed near the scene of a burglary.  Both 

of you have been brought to the police station, 

where you are interrogated separately by the 

police.
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Prisoner’s Dilemma

The police present your options:

1. You can testify against your partner

2. You can refuse to testify against your 

partner (and keep your mouth shut)
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Prisoner’s Dilemma

Here are the consequences of your actions:

• If you testify against your partner and your partner 
refuses, you are released and your partner will 
serve 10 years in jail

• If you refuse and your partner testifies against 
you, you will serve 10 years in jail and your 
partner is released

• If both of you testify against each other, both of 
you will serve 5 years in jail

• If both of you refuse, both of you will only serve 1 
year in jail
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Prisoner’s Dilemma

• Your partner is offered the same deal

• Remember that you can’t communicate with 

your partner and you don’t know what 

he/she will do

• Will you testify or refuse?
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Game Theory

• Welcome to the world of Game Theory!

• Game Theory defined as “the study of 

rational decision-making in situations of 

conflict and/or cooperation”

• Adversarial search is part of Game Theory

• We will now look at a much broader group 

of games
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Types of games we will deal with 

today

• Two players

• Discrete, finite action space

• Simultaneous moves (or without knowledge 

of the other player’s move)

• Imperfect information

• Zero sum games and non-zero sum games
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Uses of Game Theory

• Agent design: determine the best strategy 

against a rational player and the expected 

return for each player

• Mechanism design: Define the rules of the 

game to influence the behavior of the agents

Real world applications: negotiations, bandwidth sharing, 

auctions, bankruptcy proceedings, pricing decisions
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Back to Prisoner’s Dilemma

Bob: testify Bob: refuse

Alice: testify A = -5, B = -5 A = 0, B = -10

Alice: refuse A = -10, B = 0 A = -1, B = -1

Normal-form (or matrix-form) representation

Players: 

Alice, Bob

Actions: testify, refuse

Payoffs for each player (non-zero sum 

game in this example)
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Formal definition of Normal Form

The normal-form representation of an n-

player game specifies:

• The players’ strategy spaces S1, …, Sn

• Their payoff functions u1,…,un

where ui: S1 x S2 x … x Sn → R i.e. a 

function that maps from the combination of 

strategies of all the players and returns the 

payoff for player i
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Strategies

• Each player must adopt and execute a 

strategy

• Strategy = policy i.e. mapping from state to 

action

• Prisoner’s Dilemma is a one move game:

– Strategy is a single action

– There is only a single state

• A pure strategy is a deterministic policy
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Other Normal Form Games

The game of chicken: two cars drive at each other on a narrow road.  

The first one to swerve loses.

B: Stay B: Swerve

A: Stay A = -100, B = -100 A = 1, B = -1

A: Swerve A = -1, B = 1 A = 0, B = 0
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Other Normal Form Games

Penalty kick in Soccer: Shooter vs. Goalie.  The shooter shoots 

the ball either to the left or to the right.  The goalie dives either 

left or right.  If it’s the same side as the ball was shot, the goalie 

makes the save.  Otherwise, the shooter scores.

Goalie: Left Goalie: Right

Shooter: 

Left

S =-1, G = 1 S = 1, G = -1

Shooter: 

Right

S = 1, G = -1 S = -1, G = 1
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Prisoner’s Dilemma Strategy

• What is the right pure strategy for Alice or 

Bob?

• (Assume both want to maximize their own 

expected utility)

Bob: testify Bob: refuse

Alice: testify A = -5, B = -5 A = 0, B = -10

Alice: refuse A = -10, B = 0 A = -1, B = -1
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Prisoner’s Dilemma Strategy

Alice thinks:

• If Bob testifies, I get 5 years if I testify and 10 
years if I don’t

• If Bob doesn’t testify, I get 0 years if I testify and 
1 year if I don’t

• “Alright I’ll testify”

Bob: testify Bob: refuse

Alice: testify A = -5, B = -5 A = 0, B = -10

Alice: refuse A = -10, B = 0 A = -1, B = -1
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Prisoner’s Dilemma Strategy

Bob: testify Bob: refuse

Alice: testify A = -5, B = -5 A = 0, B = -10

Alice: refuse A = -10, B = 0 A = -1, B = -1

Testify is a dominant strategy for the game 

(notice how the payoffs for Alice are always 

bigger if she testifies than if she refuses)
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Dominant Strategies

Suppose a player has two strategies S and S’.  We 
say S dominates S’ if choosing S always yields at 
least as good an outcome as choosing S’.

• S strictly dominates S’ if choosing S always 
gives a better outcome than choosing S’ (no matter 
what the other player does)

• S weakly dominates S’ if there is one set of 
opponent’s actions for which S is superior, and all 
other sets of opponent’s actions give S and S’ the 
same payoff.
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Example of Dominant Strategies

Bob: testify Bob: refuse

Alice: testify A = -5, B = -5 A = 0, B = -10

Alice: refuse A = -10, B = 0 A = -1, B = -1

Bob: testify Bob: refuse

Alice: testify A = -5, B = -5 A = 0, B = -10

Alice: refuse A = -10, B = 0 A = 0, B = -1

Note

“testify” strongly 

dominates “refuse”

“testify” weakly 

dominates “refuse”
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Dominated Strategies (The opposite)

S is dominated by S’ if choosing S never gives a 

better outcome than choosing S’, no matter what 

the other players do

• S is strictly dominated by S’ if choosing S 

always gives a worse outcome than choosing S’, 

no matter what the other player does

• S is weakly dominated by S’ if there is at least 

one set of opponent’s actions for which S gives a 

worse outcome than S’, and all other sets of 

opponent’s actions give S and S’ the same payoff.
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Dominance

• It is irrational not to play a strictly dominant 

strategy (if it exists)

• It is irrational to play a strictly dominated 

strategy

• Since Game Theory assumes players are 

rational, they will not play strictly 

dominated strategies
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Iterated Elimination of  Strictly 

Dominated Strategies

Bob: testify Bob: refuse

Alice: testify A = -5, B = -5 A = 0, B = -10

Alice: refuse A = -10, B = 0 A = -1, B = -1

Bob: testify Bob: refuse

Alice: testify A = -5, B = -5 A = 0, B = -10

Simplifies to:

22

Iterated Eliminiation of Strictly 

Dominated Strategies

Bob: testify Bob: refuse

Alice: testify A = -5, B = -5 A = 0, B = -10

But in this simplified game, 

“refuse” is also a  strictly 

dominated strategy for Bob
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Iterated Elimination of Strictly 

Dominated Strategies

Bob: testify Bob: refuse

Alice: testify A = -5, B = -5 A = 0, B = -10

Simplifies to:

Bob: testify

Alice: testify A = -5, B = -5

This is the game-

theoretic solution to 

Prisoner’s Dilemma 

(note that it’s worse 

off than if both 

players refuse)

24

Dominant Strategy Equilibrium

• (testify,testify) is a dominant strategy equilibrium

• It’s an equilibrium because no player can benefit 
by switching strategies given that the other player 
sticks with the same strategy

• An equilibrium is a local optimum in the space of 
policies

Bob: testify Bob: refuse

Alice: testify A = -5, B = -5 A = 0, B = -10

Alice: refuse A = -10, B = 0 A = -1, B = -1
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Pareto Optimal

• An outcome is Pareto optimal if there is no 
other outcome that all players would prefer

• An outcome is Pareto dominated by 
another outcome if all players would prefer 
the other outcome

• If Alice and Bob both testify, this outcome 
is Pareto dominated by the outcome if they 
both refuse.

• This is why it’s called Prisoner’s Dilemma

Iterated Prisoner’s Dilemma

• Possible to arrive at the Pareto optimal 

solution

• Strategies for repeated game:

– Perpetual punishment: refuse unless opponent 

has ever played testify

– Tit-for-tat: start with refuse; then play the 

opponents previous move

• This situation arose in trench warfare in 

WWI (see The Evolution of Cooperation by 

Robert Axelrod for more) 26
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What If No Strategies Are Strictly 

Dominated?

S1 S2 S3

S1 A = 0, B = 4 A = 4, B = 0 A = 5, B = 3

S2 A =  4, B = 0 A = 0, B = 4 A = 5, B = 3

S3 A = 3, B = 5 A = 3, B = 5 A = 6, B = 6

B

A

How do we find these equilibrium points in the game?
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Nash Equilibrium

• A dominant strategy equilibrium is a 
special case of a Nash Equilibrium

• Nash Equilibrium: A strategy profile in 
which no player wants to deviate from his 
or her strategy.

• Strategy profile: An assignment of a 
strategy to each player e.g. (testify, testify) 
in Prisoner’s Dilemma

• Any Nash Equilibrium will survive iterated 
elimination of strictly dominated strategies
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Nash Equilibrium in Prisoner’s Dilemma

Bob: testify Bob: refuse

Alice: testify A = -5, B = -5 A = 0, B = -10

Alice: refuse A = -10, B = 0 A = -1, B = -1

If (testify,testify) is a Nash Equilibrium, then:

• Alice doesn’t want to change her strategy of “testify” given 

that Bob chooses “testify”

• Bob doesn’t want to change his strategy of “testify” given that 

Alice chooses “testify”
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How to Spot a Nash Equilibrium

S1 S2 S3

S1 A = 0, B = 4 A = 4, B = 0 A = 5, B = 3

S2 A = 4, B = 0 A = 0, B = 4 A = 5, B = 3

S3 A = 3, B = 5 A = 3, B = 5 A = 6, B = 6

B

A
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How to Spot a Nash Equilibrium

S1 S2 S3

S1 A = 0, B = 4 A = 4, B = 0 A = 5, B = 3

S2 A = 4, B = 0 A = 0, B = 4 A = 5, B = 3

S3 A = 3, B = 5 A = 3, B = 5 A = 6, B = 6

B

A

Go through each square and see:

• If player A gets a higher payoff if she changes her strategy

• If player B gets a higher payoff if he changes his strategy

• If the answer is no to both of the above, you have a Nash 

Equilibrium
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How to Spot a Nash Equilibrium

S1 S2 S3

S1 A = 0, B = 4 A = 4, B = 0 A = 5, B = 3

S2 A = 4, B = 0 A = 0, B = 4 A = 5, B = 3

S3 A = 3, B = 5 A = 3, B = 5 A = 6, B = 6

B

A

B won’t change his 

Strategy of S3

Payoff of 6 > 5 (S2) 

and 6 > 5 (S1)

A won’t change her 

Strategy of S3

Payoff of 6  > 5 (S2) 

and 6 > 5 (S1)
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Formal Definition of A Nash 

Equilibrium (n-player)
Notation:

Si = Set of strategies for player i

si  Si means strategy si is a member of strategy set Si

ui(s1 , s2 , …, sn) = payoff for player i if all the players in the 

game play their respective strategies s1, s2, …, sn.

s*
1  S1 , s*

2  S2 , …, s*
n  Sn are a Nash equilibrium iff:
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Formal Definition of a Nash 

Equilibrium

Using the notation ui(A’s strategy, B’s strategy):

S1 S2 S3

S1 A = 0, B = 4 A = 4, B = 0 A = 5, B = 3

S2 A = 4, B = 0 A = 0, B = 4 A = 5, B = 3

S3 A = 3, B = 5 A = 3, B = 5 A = 6, B = 6

B

A
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Neat fact

• If your game has a single Nash Equilibrium, 

you can announce to your opponent that you 

will play your Nash Equilibrium strategy

• If your opponent is rational, he will have no 

choice but to play his part of the Nash 

Equilibrium strategy

• Why? 

36

Can you have more than one Nash 

Equilibrium?

• ACME, a video game hardware 

manufacturer, has to decide whether its next 

game machine will use Blu-ray or DVDs

• Best, a video game software producer, 

needs to decide whether to produce its next 

game on Blu-ray or DVD

• Profits for both will be positive if they agree 

and negative if they disagree
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Can you have more than one Nash 

Equilibrium?

Best: bluray Best: dvd

ACME: bluray A = 9, B = 9 A = -3, B = -1

ACME: dvd A = -4, B = -1 A = 5, B = 5

38

Can you have more than one Nash 

Equilibrium?

Best: bluray Best: dvd

ACME: bluray A = 9, B = 9 A = -3, B = -1

ACME: dvd A = -4, B = -1 A = 5, B = 5

There are two Nash Equilibria in this game.  In general, 

you can have multiple Nash Equilibria.  This creates a 

big problem.  Can you see what that problem is?



20

Dealing with Multiple Nash Equilibria

1. Could choose the Pareto-optimal Nash Equilibrium e.g. 

(bluray, bluray) but 

– What if there are multiple Pareto-optimal Nash 

Equilibria?

– Or it’s too computationally expensive to find all the 

Nash Equilibria?

– Or there are an infinite number of Nash Equilibria?

2. Could communicate before the game

– But what if you can’t compute all the Nash Equilibria 

beforehand?

3. Take your best guess

This is a big unresolved issue
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Can we have no Nash Equilibria?

Two Fingered Morra

Two players, O (for Odd) and E (for Even) 

simultaneously display one or two fingers.  Let 

the total number of fingers be f.

1. If f is odd, O collects f dollars from E.

2. If f is even, E collects f dollars from O.

O: one O: two

E: one E = 2, O = -2 E = -3, O = 3

E: two E = -3, O = 3 E = 4, O = -4

E is the 

max player
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Two Fingered Morra

O: one O: two

E: one E = 2, O = -2 E = -3, O = 3

E: two E = -3, O = 3 E = 4, O = -4

• No pure strategy Nash Equilibrium

• If total # of fingers is even, O will want to switch

• If total # of fingers is odd, E will want to switch

• Also, this is a zero-sum game (payoffs in a cell sum to zero)

42

The Big Theorem

• [Nash 1950] In the n-player normal-form 

game G={S1, …, Sn; u1, …, un}, if n is finite 

and Si is finite for every i then there exists 

at least one Nash Equilibrium, possibly 

involving mixed strategies
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Mixed Strategies

• Recall that a pure strategy is a deterministic policy 

i.e. you pick a strategy and play it all the time

• A mixed strategy is a randomized policy i.e. you 

select your strategy based on a probability 

distribution

• E.g. Select strategy S1 with probability p and 

strategy S2 with probability (1-p)

• Is there a mixed strategy Nash Equilibrium in 2 

Fingered Morra?

44

Formal Definition of a Mixed 

Strategy

In the normal-form game 

G={S1, …, Sn; u1, …, un}, 

suppose Si = {si1, …, siK}.  

Then a mixed strategy for a player i is a 

probability distribution pi = (pi1, …, piK), 

where 0 ≤ pik ≤ 1 for k = 1, …, K 

and pi1 + … + piK = 1.
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Mixed Strategy Nash Equilibrium

• The pair of mixed strategies (MA,MB) are a 

Nash Equilibrium iff

• Player A does not want to deviate from MA

(because MA is Player A’s best response to 

MB and)

• Player B does not want to deviate from MB

(because MB is Player B’s best response to 

MA)

46

Finding optimal mixed strategy for 

two-player zero-sum games

• Note: applies to zero-sum games (or, more 

generally, constant sum games)

• Von Neumann’s maximin technique
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Expected Payoff to E if O Uses a 

Mixed Strategy

O: one O: two

E: one E = 2, O = -2 E = -3, O = 3

E: two E = -3, O = 3 E = 4, O = -4

Suppose O chooses to display one finger with probability p and 

two fingers with probability (1-p)

If E chooses the pure strategy of one finger, E’s expected profit is 

2p - 3(1-p) = 2p - 3 + 3p = 5p - 3

If E chooses the pure strategy of two fingers, E’s expected profit is 

-3p + 4(1-p) = -3p + 4 – 4p = -7p + 4

48

Expected Payoff to E if O Uses a 

Mixed Strategy
5p - 3 = -7p + 4

=> 12p = 7

=> p = 7/12

When p < 7/12, E plays ‘two’

When p > 7/12, E plays ‘one’

O gets to pick p to minimize E’s 

expected payoff.  O picks the 

lowest point of the higher of the 

two lines.  This happens at the 

intersection of the two lines.

E’s expected payoff at p=7/12 is 5(7/12)-3 = -1/12

O’s mixed strategy is (7/12 for ‘one’, 5/12 for ‘two’)

E's expected payoff if O plays 'one' with probability p 

and 'two' with probability (1-p)
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Expected Payoff to O if E Uses a 

Mixed Strategy

O: one O: two

E: one E = 2, O = -2 E = -3, O = 3

E: two E = -3, O = 3 E = 4, O = -4

Suppose E chooses to display one finger with probability q and 

two fingers with probability (1-q)

If O chooses the pure strategy of one finger, O’s expected payoff is 

-2q + 3(1-q) = -2q + 3 – 3q = -5q + 3

If O chooses the pure strategy of two fingers, O’s expected payoff 

is 3q – 4(1-q) = 3q – 4 + 4q = 7q - 4
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Expected Payoff to O if E Uses a 

Mixed Strategy
-5q + 3 = 7q - 4

 7 = 12q

 q = 7/12

When q < 7/12, O plays ‘one’

When q > 7/12, O plays ‘two’

E gets to pick p to minimize O’s 

expected payoff.  E picks the 

lowest point of the higher of the 

two lines.  This happens at the 

intersection of the two lines.

O’s expected payoff at q=7/12 is -5(7/12)+3 = -35/12 + 36/12 = 1/12.

E’s mixed strategy is (7/12 for ‘one’, 5/12 for ‘two’)

O's expected payoff when E plays 'one' with 

probability q and 'two'  with probability (1-q)
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Mixed Strategy

• E’s expected payoff is -1/12, O’s is 1/12

• It is better to be O than to be E

• The final mixed strategy is for both players 

to play “one” with probability 7/12 and 

“two” with probability 5/12

– It’s a coincidence that both players have the 

same mixed strategy here; in general they could 

be different

• This is a maximin equilibrium (which is 

also a Nash equilibrium)

52

Theoretical Results

• Every two-player zero-sum game has a 

maximin equilibrium when you allow 

mixed strategies

• Every Nash equilibrium in a two-player 

zero-sum game is a maximin equilibrium 

for both players
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Recipe for Computing Optimal Mixed 

Strategy 2x2 Constant-Sum Games 

• Let Player B use strategy S1 with probability p

• Compute Player A’s expected payoff if A uses pure strategy S1: 

m11p + m21(1-p)

• Compute Player A’s expected payoff if A uses pure strategy S2: 

m12p + m22(1-p)

• Find the p between 0 and 1 that minimizes

max( m11p + m21(1-p), m12p + m22(1-p))

• The optimum will be at p=0, p=1 or at the point where the two lines 
intersect

• Repeat by letting Player A use Strategy S1 with probability q but 
looking at B’s payoffs now

B: S1 B: S2

A: S1 A = m11 A = m21

A: S2 A = m12 A = m22

Practice

• Calculate B’s Nash equilibrium strategy.

• Calculate A’s expected payoff.

54

B: S1 B: S2

A: S1 A = -2, B = 2 A = 3, B = -3

A: S2 A = 1, B = -1 A = -2, B = 2
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CW: Practice

• Calculate A’s Nash equilibrium strategy.

• Calculate B’s expected payoff.

55

B: S1 B: S2

A: S1 A = -2, B = 2 A = 3, B = -3

A: S2 A = 1, B = -1 A = -2, B = 2

Recipe for Computing Optimal Mixed 

Strategy NxM Zero-Sum Games 
• NxM game = Player A has N pure strategies, Player B has M pure strategies

• Let Player B use:

Strategy S1 with probability p1

Strategy S2 with probability p2

:

Strategy SN with probability pN

• Compute Player A’s expected payoff if A uses: 

Pure strategy S1: e1 = m11p1 + m21p2 + … + mN1pN

Pure strategy S2: e2 = m12p1 + m22p2 + … + mN2pN

:

Pure strategy SM: eM = m1Mp1 + m2Mp2 + … + mNMpN

• Find p1, p2, …, pN to minimizes

max( e1, e2, …, eM ) subject to Σ pi = 1 and 0 ≤ pi ≤ 1  for all i

• Use a method called Linear Programming (polynomial time in number of 
actions)

• Repeat by letting Player A use a mixed strategy and looking at Player B’s 
payoffs
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Conclusions on Game Theory

• Game theory is mathematically elegant, but there can be 
problems when applying it to real world problems:
– Assumes opponents will play the equilibrium strategy

– What to do with multiple Nash equilibria?

– Computing Nash equilibria for complex games is nasty (perhaps 
even intractable)

– Players have non-stationary policies

• Game theory used mainly to analyze environments at 
equilibrium rather than to control agents within an 
environment

• Also good for designing environments (mechanism design)
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What you should know

• How to find pure strategy Nash Equilibria 

in a game

• Problems with having multiple Nash 

Equilibria

• How to compute mixed strategy Nash 

Equilibria in two-player constant sum 

games


