
1

1

CS 331: Artificial Intelligence

Informed Search

2

Informed Search

• How can we make search smarter?

• Use problem-specific knowledge beyond

the definition of the problem itself

• Specifically, incorporate knowledge of how

good a non-goal state is

2

3

Best-First Search

• Node selected for expansion based on an

evaluation function f(n). i.e. expand the

node that appears to be the best

• Node with lowest evaluation is selected for

expansion

• Uses a priority queue

• We’ll talk about Greedy Best-First Search

and A* Search

4

Heuristic Function

• h(n) = estimated cost of the cheapest path

from node n to a goal node

• h(goal node) = 0

• Contains additional knowledge of the

problem

3

5

Greedy Best-First Search

• Expands the node that is closest to the goal

• f(n) = h(n)

6

Greedy Best-First Search Example

Corvallis

Albany

Salem

McMinnville

Portland
Goal State

Initial State

11

26

30

38

46

Wilsonville

18

Corvallis 56

Albany 49

Salem 28

Portland 17

McMinnville 18

Straight line distance

(as the crow flies) to

Wilsonville in miles28

This is the

“actual” driving

distance in miles

4

7

Greedy Best-First Search Example

Corvallis

56

h(n)

Corvallis 56

Albany 49

Salem 28

Portland 17

McMinnville 18

8

Greedy Best-First Search Example

Corvallis

McMinnville Albany

18 49

Corvallis 56

Albany 49

Salem 28

Portland 17

McMinnville 18

5

Greedy Best-First Search Example

Corvallis

McMinnville Albany

49

Portland Wilsonville

0

Corvallis

5617

Corvallis →McMinnville→ Wilsonville = 74 miles

Corvallis 56

Albany 49

Salem 28

Portland 17

McMinnville 18

Greedy Best-First Search Example

Corvallis →Albany→ Salem → Wilsonville = 67 miles

But the route below

is much shorter than

the route found by

Greedy Best-First

Search!

Corvallis

Albany

Salem

McMinnville

Portland
Goal State

Initial State

11

26

30

38

46

Wilsonville

18

28

6

11

Evaluating Greedy Best-First Search

Complete? No (could start down an infinite

path)

Optimal?

Time Complexity

Space Complexity

12

Evaluating Greedy Best-First Search

Complete? No (could start down an infinite

path)

Optimal? No

Time Complexity

Space Complexity

Greedy Best-First search results in lots of dead ends which

leads to unnecessary nodes being expanded

7

13

Evaluating Greedy Best-First Search

Complete? No (could start down an infinite

path)

Optimal? No

Time Complexity O(bm)

Space Complexity

Greedy Best-First search results in lots of dead ends which

leads to unnecessary nodes being expanded

14

Evaluating Greedy Best-First Search

Complete? No (could start down an infinite

path)

Optimal? No

Time Complexity O(bm)

Space Complexity O(bm)

Greedy Best-First search results in lots of dead ends which

leads to unnecessary nodes being expanded

8

15

A* Search

• A much better alternative to greedy best-

first search

• Evaluation function for A* is:

f(n) = g(n) + h(n)

where g(n) = path cost from the start node

to n

• If h(n) satisfies certain conditions, A*

search is optimal and complete!

16

Admissible Heuristics

• A* is optimal if h(n) is an admissible

heuristic

• An admissible heuristic is one that never

overestimates the cost to reach the goal

• Admissible heuristic = optimistic

• Straight line distance was an admissible

heuristic

9

17

Greedy Best-First Search Example

Corvallis

Albany

Salem

McMinnville

Portland
Goal State

Initial State

11

26

30

38

46

Wilsonville

18

Corvallis 56

Albany 49

Salem 28

Portland 17

McMinnville 18

Straight line distance

(as the crow flies) to

Wilsonville in miles28

This is the

“actual” driving

distance in miles

18

A* Search Example

Corvallis

56=0+56

f(n)=g(n)+h(n)

Corvallis 56

Albany 49

Salem 28

Portland 17

McMinnville 18

Straight line distance

(as the crow flies) to

Wilsonville in miles

10

19

A* Search Example

Corvallis

McMinnville Albany

46+18=64 11+49=60

Corvallis 56

Albany 49

Salem 28

Portland 17

McMinnville 18

Straight line distance

(as the crow flies) to

Wilsonville in miles

46 11

20

A* Search Example

Corvallis

McMinnville Albany

46+18=64

Salem Corvallis

37+28=65 22+56=78Corvallis 56

Albany 49

Salem 28

Portland 17

McMinnville 18

46 11

1126

11

21

A* Search Example

Corvallis

McMinnville Albany

Salem Corvallis

37+28=65 22+56=78

Portland WilsonvilleCorvallis

84+17=101 92+56=148 74+0=74

Note: Don’t stop when you put a goal state on the priority

queue (otherwise you get a suboptimal solution)

46 11

1126
38

46 28

A* Search Example

Corvallis

McMinnville Albany

Salem Corvallis

22+56=78

Portland WilsonvilleCorvallis

84+17=101 92+56=148 74+0=74

Wilsonville Albany

67+0=67 63+49=112

Proper termination: Stop when you pop a goal state from the

priority queue

46

38
46

11

11
26

28

30 26

12

23

Proof that A* using TREE-SEARCH

is optimal if h(n) is admissible
• Suppose A* returns a suboptimal goal node G2 .

• G2 must be the least cost node in the fringe. Let

the cost of optimal solution be C*

• Because G2 is suboptimal:

f(G2) = g(G2) + h(G2) = g(G2) > C*

• Now consider a fringe node n on an optimal

solution path to the goal G

• If h(n) is admissible then:

f(n) = g(n) + h(n) ≤ C*

• We have shown that f(n) ≤ C* < f(G2), so G2 will

not get expanded before n. Henc A* must return

an optimal solution.

h(G2) = 0 because it

is a goal node

nG2

G

C*

24

What about search graphs (more

than one path to a node)?

• What if we expand a state we’ve already seen?

• Suppose we use the GRAPH-SEARCH solution
and not expand repeated nodes

• Could discard the optimal path if it’s not the first
one generated

• One simple solution: ensure optimal path to any
repeated state is always the first one followed (like
in Uniform-cost search)

• Requires an extra requirement on h(n) called
consistency (or monotonicity)

13

Consistency

• A heuristic is consistent if, for every node n and every
successor n’ of n generated by any action a:

h(n) ≤ c(n,a,n’) + h(n’)

• A form of the triangle inequality – each side of the triangle
cannot be longer than the sum of the two sides

Step cost of going from n to n’

by doing action a

n

n’

G

c(n,a,n’) h(n’)

h(n)
n

n’

G

c(n,a,n’)=2

h(n’)=1

h(n)=2

n

n’

G

c(n,a,n’)=2

h(n’)=1

h(n)=4

CONSISTENT INCONSISTENT

26

Consistency

• Every consistent heuristic is also admissible

• A* using GRAPH-SEARCH is optimal if

h(n) is consistent

• Most admissible heuristics are also

consistent

14

27

Consistency

• Claim: If h(n) is consistent, then the values of f(n) along
any path are nondecreasing

• Proof:

Suppose n’ is a successor of n. Want to show f(n’) ≥ f(n)

Then g(n’) = g(n) + c(n,a,n’) for some a

f(n’) = g(n’) + h(n’)

= g(n) + c(n,a,n’) + h(n’)

≥ g(n) + h(n)

= f(n)

• Thus, the sequence of nodes expanded by A* is in
nondecreasing order of f(n)

• First goal selected for expansion must be an optimal
solution since all later nodes will be at least as expensive

From defn of consistency:

c(n,a,n’) + h(n’) ≥ h(n)

28

A* is Optimally Efficient

• Among optimal algorithms that expand search

paths from the root, A* is optimally efficient for

any given heuristic function

• Optimally efficient: no other optimal algorithm is

guaranteed to expand fewer nodes than A*
– Fine print: except A* might possibly expand more nodes with f(n) = C*

where C* is the cost of the optimal path – tie-breaking issues

• Any algorithm that does not expand all nodes with

f(n) < C* runs the risk of missing the optimal

solution

15

29

Evaluating A* Search

With a consistent heuristic, A* is complete, optimal and

optimally efficient. Could this be the answer to our

searching problems?

30

Evaluating A* Search

With a consistent heuristic, A* is complete, optimal and

optimally efficient. Could this be the answer to our

searching problems?

The Dark Side of A*…

Time complexity is exponential (although it can be

reduced significantly with a good heuristic)

The really bad news: space complexity is exponential

(usually need to store all generated states). Typically

runs out of space on large-scale problems.

16

Summary of A* Search

Complete? Yes if h(n) is consistent, b is finite, and

all step costs exceed some finite 1

Optimal?

Time Complexity

Space Complexity

1 Since f(n) is nondecreasing, we must eventually hit an f(n) = cost of the path to a

goal state

Summary of A* Search

Complete? Yes if h(n) is consistent, b is finite, and

all step costs exceed some finite 1

Optimal? Yes if h(n) is consistent and admissible

Time Complexity

Space Complexity

1 Since f(n) is nondecreasing, we must eventually hit an f(n) = cost of the path to a

goal state

17

Summary of A* Search

Complete? Yes if h(n) is consistent, b is finite, and

all step costs exceed some finite 1

Optimal? Yes if h(n) is consistent and admissible

Time Complexity O(bd) (In the worst case but a good

heuristic can reduce this significantly)

Space Complexity

1 Since f(n) is nondecreasing, we must eventually hit an f(n) = cost of the path to a

goal state

Summary of A* Search

Complete? Yes if h(n) is consistent, b is finite, and

all step costs exceed some finite 1

Optimal? Yes if h(n) is consistent and admissible

Time Complexity O(bd) (In the worst case but a good

heuristic can reduce this significantly)

Space Complexity O(bd) – Needs O(number of states), will

run out of memory for large search

spaces

1 Since f(n) is nondecreasing, we must eventually hit an f(n) = cost of the path to a

goal state

18

35

Iterative Deepening A*

• Use iterative deepening trick to reduce memory

requirements for A*

• In each iteration do a “cost-limited” depth first

search.

– Cutoff is based on the f-cost (g+h) rather than the depth

• After each iteration, the new cutoff is the

smallest f-cost that exceeded the cutoff in

the previous iteration
Complete, Optimal but more costly than

A* and can take a while to run with real-

valued costs

36

Examples of heuristic functions

7 2 4

5 6

8 3 1

1 2

3 4 5

6 7 8

The 8-puzzle

Start State End State

Heuristic #1: h1 = number of misplaced tiles eg. start state has 8 misplaced tiles.

This is an admissible heuristic

19

37

Examples of heuristic functions

7 2 4

5 6

8 3 1

1 2

3 4 5

6 7 8

The 8-puzzle

Start State End State

Heuristic #2: h2 = total Manhattan distance (sum of horizontal and vertical

moves, no diagonal moves). Start state is 3+1+2+2+3+2+2+3=18 moves away

from the end state. This is also an admissible heuristic.

38

Which heuristic is better?

• h2 dominates h1. That is, for any node n, h2(n) ≥ h1(n).

• h2 never expands more nodes than A* using h1 (except
possibly for some nodes with f(n) = C*)

• Better to use h2 provided it doesn’t overestimate (i.e., it is also
admissible) and its computation time isn’t too expensive.

Proof:

Let h1 and h2 be admissible heuristics.

Every node with f(n) < C* will surely be expanded, since A* is optimal with an

admissible heuristic. Since f(n) = g(n) + h(n), every node with h(n) < C*- g(n) will

surely be expanded for either heuristic.

Since h2 is at least as big as h1 for all nodes, every node expanded with A* using

h2 will also be expanded with A* using h1. But h1 might expand other nodes as

well. In other words, we have h1(n) ≤ h2(n) < C*- g(n)

20

Which heuristic is better?
nodes expanded

Depth IDS A*(h1) A*(h2)

2 10 6 6

4 112 13 12

6 680 20 18

8 6384 39 25

10 47127 93 39

12 3644035 227 73

14 539 113

16 1301 211

18 3056 363

20 7276 676

22 18094 1219

24 39135 1641

From Russell and Norvig Figure 4.8 (Results averaged over 100

instances of the 8-puzzle for depths 2-24).

40

Inventing Admissible Heuristics

• Relaxed problem: a problem with fewer

restrictions on the actions

• The cost of an optimal solution to a relaxed

problem is an admissible heuristic for the original

problem

• If we relax the rules so that a square can move

anywhere, we get heuristic h1

• If we relax the rules to allow a square to move to

any adjacent square, we get heuristic h2

21

41

What you should know

• Be able to run A* by hand on a simple

example

• Why it is important for a heuristic to be

admissible and consistent

• Pros and cons of A*

• How do you come up with heuristics

• What it means for a heuristic function to

dominate another heuristic function

