

Best-First Search

- Node selected for expansion based on an evaluation function $f(n)$. i.e. expand the node that appears to be the best
- Node with lowest evaluation is selected for expansion
- Uses a priority queue
- We'll talk about Greedy Best-First Search and A* Search

Informed Search

- How can we make search smarter?
- Use problem-specific knowledge beyond the definition of the problem itself
- Specifically, incorporate knowledge of how good a non-goal state is

Greedy Best-First Search

- Expands the node that is closest to the goal
- $\mathrm{f}(\mathrm{n})=\mathrm{h}(\mathrm{n})$

Greedy Best-First Search Example

Greedy Best-First Search Example

Corvallis	56
Albany	49
Salem	28
Portland	17
McMinnville	18

Greedy Best-First Search Example

Evaluating Greedy Best-First Search	
Complete? No (could start down an infinite path) Optimal? Time Complexity Space Complexity 	

Evaluating Greedy Best-First Search

Complete?	No (could start down an infinite path)
Optimal?	No
Time Complexity	
Space Complexity	

Greedy Best-First search results in lots of dead ends which leads to unnecessary nodes being expanded

Evaluating Greedy Best-First Search	
Complete? No (could start down an infinite path $)$ Optimal? No Time Complexity $\mathrm{O}\left(\mathrm{b}^{\mathrm{m}}\right)$ Space Complexity	

Greedy Best-First search results in lots of dead ends which leads to unnecessary nodes being expanded

Greedy Best-First Search Example

Admissible Heuristics

- A^{*} is optimal if $h(n)$ is an admissible heuristic
- An admissible heuristic is one that never overestimates the cost to reach the goal
- Admissible heuristic = optimistic
- Straight line distance was an admissible heuristic

Evaluating Greedy Best-First Search

Complete?	No (could start down an infinite path)
Optimal?	No
Time Complexity	$\mathrm{O}\left(\mathrm{b}^{\mathrm{m}}\right)$
Space Complexity	$\mathrm{O}\left(\mathrm{b}^{\mathrm{m}}\right)$

Greedy Best-First search results in lots of dead ends which leads to unnecessary nodes being expanded

A* Search

- A much better alternative to greedy bestfirst search
- Evaluation function for A^{*} is:
$\mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{n})+\mathrm{h}(\mathrm{n})$
where $\mathrm{g}(\mathrm{n})=$ path cost from the start node to n
- If $\mathrm{h}(\mathrm{n})$ satisfies certain conditions, A^{*} search is optimal and complete!
search is optimal and complete!

Proof that A* using TREE-SEARCH

 is optimal if $\mathrm{h}(\mathrm{n})$ is admissible- Suppose A^{*} returns a suboptimal goal node G_{2}.
- G_{2} must be the least cost node in the fringe. Let the cost of optimal solution be $\mathrm{C}^{*} \mathrm{~h}\left(\mathrm{G}_{2}\right)=0$ because it
- Because G_{2} is suboptimat: $\mathrm{f}\left(\mathrm{G}_{2}\right)=\mathrm{g}\left(\mathrm{G}_{2}\right)+\mathrm{h}\left(\mathrm{G}_{2}\right)=\mathrm{g}\left(\mathrm{G}_{2}\right)>\mathrm{C}^{*}$
- Now consider a fringe node n on an optimal solution path to the goal G
- If $h(n)$ is admissible then:
$\mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{n})+\mathrm{h}(\mathrm{n}) \leq \mathrm{C}^{*}$

What about search graphs (more

 than one path to a node)?- What if we expand a state we've already seen?
- Suppose we use the GRAPH-SEARCH solution and not expand repeated nodes
- Could discard the optimal path if it's not the first one generated
- One simple solution: ensure optimal path to any repeated state is always the first one followed (like in Uniform-cost search)
- Requires an extra requirement on $\mathrm{h}(\mathrm{n})$ called consistency (or monotonicity)
- We have shown that $\mathrm{f}(\mathrm{n}) \leq \mathrm{C}^{*}<\mathrm{f}\left(\mathrm{G}_{2}\right)$, so G_{2} will not get expanded before n. Henc A^{*} must return an optimal solution.

Consistency

- A heuristic is consistent if, for every node n and every successor n ' of n generated by any action a :

$$
\mathrm{h}(\mathrm{n}) \leq \mathrm{c}\left(\mathrm{n}, \mathrm{a}, \mathrm{n}^{\prime}\right)+\mathrm{h}\left(\mathrm{n}^{\prime}\right)
$$

Step cost of going from n to n by doing action a

- A form of the triangle inequality - each side of the triangle cannot be longer than the sum of the two sides

Consistency

- Claim: If $h(n)$ is consistent, then the values of $f(n)$ along any path are nondecreasing
- Proof:

Suppose n^{\prime} is a successor of n. Want to show $f\left(n^{\prime}\right) \geq f(n)$
Then $g\left(n^{\prime}\right)=g(n)+c\left(n, a, n^{\prime}\right)$ for some a

$$
\begin{aligned}
\mathrm{f}\left(\mathrm{n}^{\prime}\right) & =\mathrm{g}\left(\mathrm{n}^{\prime}\right)+\mathrm{h}\left(\mathrm{n}^{\prime}\right) \\
& =\mathrm{g}(\mathrm{n})+\mathrm{c}\left(\mathrm{n}^{2}, \mathrm{a}, \mathrm{n}^{\prime}\right)+\mathrm{h}\left(\mathrm{n}^{\prime}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\geq \mathrm{g}(\mathrm{n})+\mathrm{h}(\mathrm{n}) \\
-\mathrm{f}(\mathrm{n})
\end{array} \quad \begin{aligned}
& \text { From defn of consistency } \\
& \mathrm{c}\left(\mathrm{n}, \mathrm{a}, \mathrm{n}^{\prime}\right)+\mathrm{h}\left(\mathrm{n}^{\prime}\right) \geq \mathrm{h}(\mathrm{n})
\end{aligned}
$$

$$
\begin{array}{ll}
=f(n) & c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right) \geq h(n)
\end{array}
$$

- Thus, the sequence of nodes expanded by A^{*} is in nondecreasing order of $f(n)$
- First goal selected for expansion must be an optimal solution since all later nodes will be at least as expensive

Consistency

- Every consistent heuristic is also admissible
- A* using GRAPH-SEARCH is optimal if $\mathrm{h}(\mathrm{n})$ is consistent
- Most admissible heuristics are also consistent

A* is Optimally Efficient

- Among optimal algorithms that expand search paths from the root, A^{*} is optimally efficient for any given heuristic function
- Optimally efficient: no other optimal algorithm is guaranteed to expand fewer nodes than A*
- Fine print: except A^{*} might possibly expand more nodes with $f(n)=C^{*}$ where C^{*} is the cost of the optimal path - tie-breaking issues
- Any algorithm that does not expand all nodes with $\mathrm{f}(\mathrm{n})<\mathrm{C}^{*}$ runs the risk of missing the optimal solution

Evaluating A* Search

With a consistent heuristic, A^{*} is complete, optimal and optimally efficient. Could this be the answer to our searching problems?

Evaluating A* Search

With a consistent heuristic, A^{*} is complete, optimal and optimally efficient. Could this be the answer to our searching problems?

The Dark Side of A^{*}...

Summary of A* Search	
Complete? Yes if h(n) is consistent, bis finite, and all step costs exceed some finite ε^{1} Optimal? Time Complexity Space Complexity	

${ }^{1}$ Since $f(n)$ is nondecreasing, we must eventually hit an $f(n)=$ cost of the path to a goal state

Summary of A* Search

Complete?	Yes if $\mathrm{h}(\mathrm{n})$ is consistent, b is finite, and all step costs exceed some finite ε^{1}
Optimal?	Yes if $\mathrm{h}(\mathrm{n})$ is consistent and admissible
Time Complexity	
Space Complexity	

${ }^{1}$ Since $f(n)$ is nondecreasing, we must eventually hit an $f(n)=$ cost of the path to a goal state

Summary of A^{*} Search	
Complete? Yes if $\mathrm{h}(\mathrm{n})$ is consistent, bis finite, and all step costs exceed some finite ε^{1} Optimal? Yes if h(n) is consistent and admissible Time Complexity O(bd) (In the worst case but a good heuristic can reduce this significantly) Space Complexity	

${ }^{1}$ Since $f(n)$ is nondecreasing, we must eventually hit an $f(n)=$ cost of the path to a goal state

Summary of A* Search

Complete?	Yes if $\mathrm{h}(\mathrm{n})$ is consistent, b is finite, and all step costs exceed some finite ε^{1}
Optimal?	Yes if $\mathrm{h}(\mathrm{n})$ is consistent and admissible
Time Complexity	$\mathrm{O}\left(\mathrm{b}^{d}\right)$ (In the worst case but a good heuristic can reduce this significantly)
Space Complexity	$\mathrm{O}\left(\mathrm{b}^{\mathrm{d}}\right)-$ Needs O(number of states), will run out of memory for large search spaces

${ }^{1}$ Since $f(n)$ is nondecreasing, we must eventually hit an $f(n)=$ cost of the path to a goal state

Iterative Deepening A*

- Use iterative deepening trick to reduce memory requirements for A^{*}
- In each iteration do a "cost-limited" depth first search.
- Cutoff is based on the f-cost $(\mathrm{g}+\mathrm{h})$ rather than the depth
- After each iteration, the new cutoff is the smallest f-cost that exceeded the cutoff in the previous iteration
Complete, Optimal but more costly than A* and can take a while to run with realvalued costs

Examples of heuristic functions
The 8-puzzle

7	2	4
5		6
8	3	1

Start State

[^0]
Examples of heuristic functions

The 8-puzzle

Start State

End State

Heuristic \#2: $h_{2}=$ total Manhattan distance (sum of horizontal and vertical moves, no diagonal moves). Start state is $3+1+2+2+3+2+2+3=18$ moves away from the end state. This is also an admissible heuristic.

Which heuristic is better?

- h_{2} dominates h_{1}. That is, for any node $n, h_{2}(n) \geq h_{1}(n)$.
- h_{2} never expands more nodes than A^{*} using h_{1} (except possibly for some nodes with $\left.f(n)=C^{*}\right)$
Proof:
Let h_{1} and h_{2} be admissible heuristics.
Every node with $f(n)<C^{*}$ will surely be expanded, since A^{*} is optimal with an admissible heuristic. Since $f(n)=g(n)+h(n)$, every node with $h(n)<C^{*}-g(n)$ will surely be expanded for either heuristic.
Since h_{2} is at least as big as h_{1} for all nodes, every node expanded with A* using h_{2} will also be expanded with A^{*} using h_{1}. But h_{1} might expand other nodes as well. In other words, we have $h_{1}(n) \leq h_{2}(n)<C^{*}-g(n)$
- Better to use h_{2} provided it doesn't overestimate (i.e., it is also admissible) and its computation time isn't too expensive.

Which heuristic is better?

	\# nodes expanded		
Depth	IDS	$\mathbf{A}^{*}\left(\mathbf{h}_{\mathbf{1}}\right)$	$\mathbf{A}^{*}\left(\mathbf{h}_{\mathbf{2}}\right)$
2	10	6	6
4	112	13	$\mathbf{1 2}$
6	680	20	$\mathbf{1 8}$
8	6384	39	$\mathbf{2 5}$
10	47127	93	$\mathbf{3 9}$
12	3644035	227	73
14		539	$\mathbf{1 1 3}$
16		1301	$\mathbf{2 1 1}$
18		3056	$\mathbf{3 6 3}$
20		7276	$\mathbf{6 7 6}$
22		18094	$\mathbf{1 2 1 9}$
24		39135	$\mathbf{1 6 4 1}$

From Russell and Norvig Figure 4.8 (Results averaged over 100 instances of the 8 -puzzle for depths 2-24).

Inventing Admissible Heuristics

- Relaxed problem: a problem with fewer restrictions on the actions
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If we relax the rules so that a square can move anywhere, we get heuristic h_{1}
- If we relax the rules to allow a square to move to any adjacent square, we get heuristic h_{2}

What you should know

- Be able to run A^{*} by hand on a simple example
- Why it is important for a heuristic to be admissible and consistent
- Pros and cons of A*
- How do you come up with heuristics
- What it means for a heuristic function to dominate another heuristic function

[^0]: Heuristic \#1: $h_{1}=$ number of misplaced tiles eg. start state has 8 misplaced tiles. This is an admissible heuristic

