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CS 331: Artificial Intelligence

Local Search
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Tough real-world problems

Suppose you had to solve VLSI layout 

problems (minimize distance between 

components, unused space, etc.)…

Or schedule workers with specific skill 

sets to do tasks that have resource 

and ordering constraints

Or schedule airlines…
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What do these problems have in 

common?

• These problems are unlike the search 

problems from last class:

– The path to the goal is irrelevant -- all you care 

about is the final configuration

– These are often optimization problems in which 

you find the best state according to an objective 

function

• These problems are examples of local 

search problems
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Local Search Problems

• Given a set of states S = {X1, …, Xm}

• And an objective function Eval(Xi) that 

returns the “goodness” of a state

• Find the state X* that maximizes the 

objective function

Note: Sometimes Eval(Xi) is a cost function instead of an objective function.  In 

this case, we want to find the state X* that minimizes the cost function.  We will 

deal with objective functions in these slides but it’s easy to just flip the signs 

and think of cost functions.
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Global maximum

Local maximum

Flat local maximum
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Why is this hard?

• Lots of states (sometimes an infinite number)

• Most of these problems are NP-complete

• Objective function might be expensive

But:

• Use very little memory (usually constant)

• Find reasonable (but usually not optimal) solutions 

in large or infinite state spaces
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Example: n-queens

• State X = placement of the queens on the board

• Eval(X) = # of pairs of queens attacking each other

• Want to minimize Eval(X)

Eval(X) = 5 Eval(X) = 2 Eval(X) = 0

Local Search Algorithm Recipe

1. Start with initial 

configuration X

2. Evaluate its neighbors i.e. 

the set of all states 

reachable in one move 

from X

3. Select one of its neighbors 

X*

4. Move to X* and repeat 

until the current 

configuration is 

satisfactory

Common stopping criteria:

• Run for specified # of iterations

• Run for specified time

• Run until you can’t move uphill

Which neighbor you select is also 

very important

How you define the neighborhood 

is important to the performance of 

the algorithm.
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Outline

1. Hill-climbing

2. Simulated Annealing

3. Beam Search

4. Genetic Algorithms

5. Gradient Descent
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1. Hill-climbing
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Hill-climbing (Intuitively)

• “…resembles trying to 

find the top of Mount 

Everest in a thick fog 

while suffering from 

amnesia.”

• Starting at initial state 

X, keep moving to the 

neighbor with the 

highest objective 

function value greater 

than X’s.
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Hillclimbing Pseudocode

X  Initial configuration

Iterate:

E  Eval(X)

N  Neighbors(X)

For each Xi in N

Ei  Eval(Xi)

E*  Highest Ei

X*  Xi with highest Ei

If E* > E

X  X*

Else

Return X
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Example: 8-queens

• State: a board with 8 
queens

• Successor function: 
move a single queen to 
any other square in 
same column

• Heuristic cost function 
(h): # of pairs of 
queens attacking each 
other

These numbers are the value of the heuristic cost function if you move 

the queen in that column to that square
14

Example: 8-queens

• Local minimum with 

h=1

• Note: at global 

minimum, h=0
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More on hill-climbing

• Hill-climbing also called greedy local 

search

• Greedy because it takes the best immediate 

move

• Greedy algorithms often perform quite well
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Problems with Hill-climbing
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State Space

Gets stuck in local maxima ie. 

Eval(X) > Eval(Y) for all Y 

where Y is a neighbor of X Flat local maximum: Our 

algorithm terminates if best 

successor has same value as 

current state.  What if we 

allowed “sideways” moves?
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Neighborhoods

• Recall that we said that defining the 
neighborhood correctly is critical to the 
performance of the algorithm

• Large neighborhood: Lots of evaluations to 
do at each state but better chance of finding 
a good maximum

• Small neighborhood: Fewer evaluations at 
each state but can potentially get stuck in 
more local maxima

Variants of Hill-climbing

• Stochastic hill climbing: 

– Chooses at random among the uphill moves

– Probability of selection varies with steepness

• First-choice hill climbing:

– Generates successors randomly until one is generated that 
is better than the current state

– Good when state has many successors

• Random-restart hill-climbing

– Good for dealing with local maxima

– Conduct a series of hill-climbing searches from randomly 
generated initial states

– Stop when a goal state is found (or until time runs out, in 
which case return the best state found so far)
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Which variant?

• Depends on the state-
space landscape 
(which is difficult to 
know a priori)

• Typical real-world 
problems have an 
exponential number of 
local maxima

• But hill-climbing still 
works reasonably well

What if a state-space 

landscape looked like this 

guy’s back?
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Simulated Annealing

• Hill-climbing never makes a downhill move

• What if we added some random moves to 

hill-climbing to help it get out of local 

maxima?

• This is the motivation for simulated 

annealing

If you’re curious, annealing refers to the process used to harden metals by 

heating them to a high temperature and then gradually cooling them
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2. Simulated Annealing
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Simulated Annealing Pseudocode

X  Initial configuration

Iterate:

E  Eval(X)

X’  Randomly selected neighbor of X

E’  Eval(X’)

If E’ ≥ E

X  X’

E  E’

Else with probability p

X  X’

E  E’
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Simulated Annealing Pseudocode

X  Initial configuration

Iterate:

E  Eval(X)

X’  Randomly selected neighbor of X

E’  Eval(X’)

If E’ ≥ E

X  X’

E  E’

Else with probability p

X  X’

E  E’

This part is different 

from hillclimbing
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Simulated Annealing Pseudocode

X  Initial configuration

Iterate:

E  Eval(X)

X’  Randomly selected neighbor of X

E’  Eval(X’)

If E’ ≥ E

X  X’

E  E’

Else with probability p

X  X’

E  E’

How do you set p?
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Setting p

• What if p is too low?

– We don’t make many downhill moves and we 
might not get out of many local maxima

• What if p is too high?

– We may be making too many suboptimal 
moves

• Should p be constant?

– We might be making too many random moves 
when we are near the global maximum
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• Decrease p as iterations progress

– Accept more downhill moves early, accept fewer 

as search goes on

– Intuition: as search progresses, we are moving 

towards more promising areas and quite likely 

toward a global maximum

• Decrease p as E-E’ increases

– Accept fewer downhill moves if slope is high

– See next slide for intutition

Setting p
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E’

E

E-E’ is large: we are likely 

moving towards a sharp 

(interesting) maximum so don’t 

move downhill too much

E

E’

E-E’ is small: we are likely 

moving towards a smooth 

(uninteresting) maximum so 

we want to escape this local 

maximum 

Decreasing p as E-E’ increases
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Setting p

• Needs a temperature parameter T

• If E’ ≤ E, accept the downhill move with probability p 

= e -(E-E’)/T

• Start with high temperature T,  (more downhill moves 

allowed at the start)

• Decrease T gradually as iterations increase (less 

downhill moves allowed)

• Annealing schedule describes how T is decreased at 

each step
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Complete Simulated Annealing 

Pseudocode

X  Initial configuration

Iterate:

Do K times:

E  Eval(X)

X’  Randomly selected neighbor of X

E’  Eval(X’)

If E’ ≥ E

X  X’

E  E’

Else with probability p = e –(E-E’)/T

X  X’

E  E’

T = T

Complete Simulated Annealing 

Pseudocode

X  Initial configuration

Iterate:

Do K times:

E  Eval(X)

X’  Randomly selected neighbor of X

E’  Eval(X’)

If E’ ≥ E

X  X’

E  E’

Else with probability p = e –(E-E’)/T

X  X’

E  E’

T = T

We keep the temperature fixed 

and we iterate K times

Exponential cooling schedule 

T(n) =  T(n-1) with 0 <  < 1. 
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Convergence

• If the schedule lowers T slowly enough, the 

algorithm will find a global optimum with 

probability approaching 1

• In practice, reaching the global optimum 

could take an enormous number of 

iterations
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The fine print…

• Design of neighborhood is critical

• Lots of parameters to tweak e.g. , K, initial 

temperature

• Simulated annealing is usually better than 

hillclimbing if you can find the right 

parameters
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3. Beam Search

34

Local Beam Search

Travelling Salesman Problem

A B

CD

A B

CD

Keeps track of k states rather than just 1.  

k=2 in this example.  Start with k randomly 

generated states.
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Local Beam Search Example

Travelling Salesman Problem (k=2)

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

Generate all successors of all the k states
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Local Beam Search Example

Travelling Salesman Problem (k=2)

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

None of these is a goal state so we continue
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Local Beam Search Example

Travelling Salesman Problem (k=2)

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

Select the best k successors from the 

complete list 38

Local Beam Search Example

Travelling Salesman Problem (k=2)

A B

CD

A B

CD

Repeat the process until goal found
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Local Beam Search

• How is this different from k random restarts in 

parallel?

• Random-restart search: each search runs 

independently of the others

• Local beam search: useful information is passed 

among the k parallel search threads

• E.g. One state generates good successors while the 

other k-1 states all generate bad successors, then 

the more promising states are expanded
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Local Beam Search

• Disadvantage: all k states can become stuck 

in a small region of the state space

• To fix this, use stochastic beam search

• Stochastic beam search:

– Doesn’t pick best k successors

– Chooses k successors at random, with 

probability of choosing a given successor being 

an increasing function of its value
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Exercise

You have to move from your old apartment to your new one.  
You have the following:

• A list L = {a1, a2, …, an} of n items, each with a size s(ai) 
> 0.  

• There are M moving boxes available, each with a box 
capacity C (assume MC far exceeds the sum of the sizes 
of your items).  You can put as many items into a box as 
long as the sum of their sizes does not exceed the box 
capacity C.  

Your job is to pack your stuff into as few boxes as possible.  
Formulate this as a local search problem.
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Exercise (continued)

• States?

• Neighborhood?

• Evaluation function?

• How to avoid local maxima?
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4. Genetic Algorithms

44

Genetic Algorithms

• Like natural selection in which an organism 

creates offspring according to its fitness for 

the environment

• Essentially a variant of stochastic beam 

search that combines two parent states (just 

like sexual reproduction)

• Over time, population contains individuals 

with high fitness
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Definitions

• Fitness function: Evaluation function in GA 

terminology

• Population: k randomly generated states 

(called individuals)

• Individual: String over a finite alphabet

4 8 1 5 1 6 2 3 4 2

“chromosome”

“gene”
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Definitions

• Selection: Pick two random individuals for 

reproduction

• Crossover: Mix the two parent strings at the 

crossover point 

4 8 1 5 1 6 2 3 4 2

5 4 1 7 3 7 3 6 1 7

Crossover point randomly chosen

4 8 1 5 3 7 3 6 1 7

5 4 1 7 1 6 2 3 4 2

Parents Offspring
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Definitions

• Mutation: randomly change a location in an 

individual’s string with a small independent 

probability

4 8 1 5 1 6 2 3 4 2

4 8 1 5 1 6 0 3 4 2

Randomness aids in avoiding small local extrema
48

GA Overview

Population = Initial population

Iterate until some individual is fit enough or enough time has elapsed:

NewPopulation = Empty

For 1 to size(Population)

Select pair of parents (P1,P2) using Selection(P,Fitness Function)

Child C = Crossover(P1, P2)

With small random probability, Mutate(C)

Add C to NewPopulation

Population = NewPopulation

Return individual in Population with best Fitness Function
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GA Overview

Population = Initial population

Iterate until some individual is fit enough or enough time has elapsed:

NewPopulation = Empty

For 1 to size(Population)

Select pair of parents (P1,P2) using Selection(P,Fitness Function)

Child C = Crossover(P1, P2)

With small random probability, Mutate(C)

Add C to NewPopulation

Population = NewPopulation

Return individual in Population with best Fitness Function

This pseudocode only 

produces one child.  Could 

also do a variant like before 

where we produce 2 children

50

Lots of variants

• Variant 1: Culling - individuals below a 

certain threshold are removed

• Variant 2: Selection based on:






PopulationY

YEval

XEval
selectedXP

)(

)(
) (
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Example: 8-queens

• Fitness Function: number of nonattacking pairs of 

queens (28 is the value for the solution)

• Represent 8-queens state as an 8 digit string in 

which each digit represents position of queen

3 2 7 5 2 4 1 1

52

Example: 8-queens

53

Example: 8-queens (Fitness 

Function)

Values of Fitness Function

Probability of selection 

(proportional to fitness score)
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Example: 8-queens (Selection)

Notice 3 2 7 5 2 4 1 1 is selected twice while 

3 2 5 4 3 2 1 3 is not selected at all
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Example: 8-queens (Crossover)

3 2 7 5 2 4 1 1 2 4 7 4 8 5 5 2 3 2 7 4 8 5 5 2 56

Example: 8-queens (Mutation)

Mutation corresponds to randomly selecting a 

queen and randomly moving it in its column

57

Implementation details on Genetic 

Algorithms

• Initially, population is diverse and crossover 

produces big changes from parents

• Over time, individuals become quite similar and 

crossover doesn’t produce such a big change

• Crossover is the big advantage:

– Preserves a big block of “genes” that have evolved 

independently to perform useful functions

– E.g. Putting first 3 queens in positions 2, 4, and 6 is a 

useful block
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Schemas

• A substring in which some of the positions 

can be left unspecified eg. 246*****

• Instances: strings that match the schema

• If the average fitness of the instances of a 

schema is above the mean, then the number 

of instances of the schema within the 

population will grow over time

59

Schemas

• Schemas are important if contiguous blocks 

provide a consistent benefit

• Genetic algorithms work best when 

schemas correspond to meaningful 

components of a solution

60

The fine print…

• The representation of each state is critical to 

the performance of the GA

• Lots of parameters to tweak but if you get 

them right, GAs can work well

• Limited theoretical results (skeptics say it’s 

just a big hack)
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5. Gradient Descent
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Discrete Environments

X  Initial configuration

Iterate:

E  Eval(X)

N  Neighbors(X)

For each Xi in N

Ei  Eval(Xi)

E*  Highest Ei

X*  Xi with highest Ei

If E* > E

X  X*

Else

Return X

• In discrete state spaces, the # 

of neighbors is finite.  

• What if there is a continuum 

of possible moves leading to 

an infinite # of neighbors?

Hillclimbing pseudocode
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Local Search in Continuous State 

Spaces

• Almost all real world problems involve 

continuous state spaces

• To perform local search in continuous state 

spaces, you need techniques from calculus

• The main technique to find a minimum is 

called gradient descent (or gradient ascent if 

you want to find the maximum)
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Gradient Descent

• What is the gradient of a function f(x)?

– Usually written as 

– (the gradient itself) represents the 

direction of the steepest slope

– (the magnitude of the gradient) tells 

you how big the steepest slope is

)()( xf
x

xf





)(xf

|)(| xf
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Gradient Descent

Suppose we want to find a local minimum of 

a function f(x).  We use the gradient descent 

rule:

 xxx f 
α is the learning rate, which is 

usually a small number like 0.05

Suppose we want to find a local maximum of 

a function f(x).  We use the gradient ascent 

rule:

 xxx f 
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Gradient Descent Examples

These pictures were taken 

from Wolfram Mathworld

22)( 23  xxxf
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Question of the Day

• Why not just calculate the global optimum 

using                 ?

– May not be able to solve this equation in closed 

form

– If you can’t solve it globally, you can still 

compute the gradient locally (like we are doing 

in gradient descent)

0)(  xf
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Multivariate Gradient Descent

• What happens if your function is multivariate eg. 

f(x1,x2,x3)?

• Then 

• The gradient descent rule becomes:

























321

321 ,,),,(
x

f

x

f

x

f
xxxf

1

11
x

f
xx




 

2

22
x

f
xx




 

3

33
x

f
xx




 

69

Multivariate Gradient Ascent

Pictures taken from 

Wikipedia entry on 

gradient descent
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More About the Learning Rate

• If α is too large

– Gradient descent overshoots the optimum point 

• If α is too small

– Gradient descent requires too many steps and 

will take a very long time to converge
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Weaknesses of Gradient Descent

1. Can be very slow to converge to a local 

optimum, especially if the curvature in 

different directions is very different

2. Good results depend on the value of the 

learning rate α

3. What if the function f(x) isn’t 

differentiable at x?
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What You Should Know

• Be able to formulate a problem as a local 

search problem

• Know the difference between local search 

and uninformed and informed search

• Know how hillclimbing works

• Know how simulated annealing works

• Know the pros and cons of both methods
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What you should know

• Be able to formulate a problem as a Genetic 

Algorithm

• Understand what crossover and mutation do and why 

they are important

• Differences between hillclimbing, simulated 

annealing, local beam search, and genetic algorithms

• Understand how gradient descent works, including its 

strengths and weaknesses

• Understand how to derive the gradient descent rule


