
1

1

CS 331: Artificial Intelligence

Local Search

2

Tough real-world problems

Suppose you had to solve VLSI layout

problems (minimize distance between

components, unused space, etc.)…

Or schedule workers with specific skill

sets to do tasks that have resource

and ordering constraints

Or schedule airlines…

3

What do these problems have in

common?

• These problems are unlike the search

problems from last class:

– The path to the goal is irrelevant -- all you care

about is the final configuration

– These are often optimization problems in which

you find the best state according to an objective

function

• These problems are examples of local

search problems

4

Local Search Problems

• Given a set of states S = {X1, …, Xm}

• And an objective function Eval(Xi) that

returns the “goodness” of a state

• Find the state X* that maximizes the

objective function

Note: Sometimes Eval(Xi) is a cost function instead of an objective function. In

this case, we want to find the state X* that minimizes the cost function. We will

deal with objective functions in these slides but it’s easy to just flip the signs

and think of cost functions.

5

1D State-Space Landscape

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

State Space

Global maximum

Local maximum

Flat local maximum

6

Why is this hard?

• Lots of states (sometimes an infinite number)

• Most of these problems are NP-complete

• Objective function might be expensive

But:

• Use very little memory (usually constant)

• Find reasonable (but usually not optimal) solutions

in large or infinite state spaces

2

7

Example: n-queens

• State X = placement of the queens on the board

• Eval(X) = # of pairs of queens attacking each other

• Want to minimize Eval(X)

Eval(X) = 5 Eval(X) = 2 Eval(X) = 0

Local Search Algorithm Recipe

1. Start with initial

configuration X

2. Evaluate its neighbors i.e.

the set of all states

reachable in one move

from X

3. Select one of its neighbors

X*

4. Move to X* and repeat

until the current

configuration is

satisfactory

Common stopping criteria:

• Run for specified # of iterations

• Run for specified time

• Run until you can’t move uphill

Which neighbor you select is also

very important

How you define the neighborhood

is important to the performance of

the algorithm.

9

Outline

1. Hill-climbing

2. Simulated Annealing

3. Beam Search

4. Genetic Algorithms

5. Gradient Descent

10

1. Hill-climbing

11

Hill-climbing (Intuitively)

• “…resembles trying to

find the top of Mount

Everest in a thick fog

while suffering from

amnesia.”

• Starting at initial state

X, keep moving to the

neighbor with the

highest objective

function value greater

than X’s.
12

Hillclimbing Pseudocode

X  Initial configuration

Iterate:

E  Eval(X)

N  Neighbors(X)

For each Xi in N

Ei  Eval(Xi)

E*  Highest Ei

X*  Xi with highest Ei

If E* > E

X  X*

Else

Return X

3

Example: 8-queens

• State: a board with 8
queens

• Successor function:
move a single queen to
any other square in
same column

• Heuristic cost function
(h): # of pairs of
queens attacking each
other

These numbers are the value of the heuristic cost function if you move

the queen in that column to that square
14

Example: 8-queens

• Local minimum with

h=1

• Note: at global

minimum, h=0

15

More on hill-climbing

• Hill-climbing also called greedy local

search

• Greedy because it takes the best immediate

move

• Greedy algorithms often perform quite well

16

Problems with Hill-climbing
O

b
je

c
ti
v
e

 F
u

n
c
ti
o

n

State Space

Gets stuck in local maxima ie.

Eval(X) > Eval(Y) for all Y

where Y is a neighbor of X Flat local maximum: Our

algorithm terminates if best

successor has same value as

current state. What if we

allowed “sideways” moves?

17

Neighborhoods

• Recall that we said that defining the
neighborhood correctly is critical to the
performance of the algorithm

• Large neighborhood: Lots of evaluations to
do at each state but better chance of finding
a good maximum

• Small neighborhood: Fewer evaluations at
each state but can potentially get stuck in
more local maxima

Variants of Hill-climbing

• Stochastic hill climbing:

– Chooses at random among the uphill moves

– Probability of selection varies with steepness

• First-choice hill climbing:

– Generates successors randomly until one is generated that
is better than the current state

– Good when state has many successors

• Random-restart hill-climbing

– Good for dealing with local maxima

– Conduct a series of hill-climbing searches from randomly
generated initial states

– Stop when a goal state is found (or until time runs out, in
which case return the best state found so far)

4

19

Which variant?

• Depends on the state-
space landscape
(which is difficult to
know a priori)

• Typical real-world
problems have an
exponential number of
local maxima

• But hill-climbing still
works reasonably well

What if a state-space

landscape looked like this

guy’s back?

20

Simulated Annealing

• Hill-climbing never makes a downhill move

• What if we added some random moves to

hill-climbing to help it get out of local

maxima?

• This is the motivation for simulated

annealing

If you’re curious, annealing refers to the process used to harden metals by

heating them to a high temperature and then gradually cooling them

21

2. Simulated Annealing

22

Simulated Annealing Pseudocode

X  Initial configuration

Iterate:

E  Eval(X)

X’  Randomly selected neighbor of X

E’  Eval(X’)

If E’ ≥ E

X  X’

E  E’

Else with probability p

X  X’

E  E’

23

Simulated Annealing Pseudocode

X  Initial configuration

Iterate:

E  Eval(X)

X’  Randomly selected neighbor of X

E’  Eval(X’)

If E’ ≥ E

X  X’

E  E’

Else with probability p

X  X’

E  E’

This part is different

from hillclimbing

24

Simulated Annealing Pseudocode

X  Initial configuration

Iterate:

E  Eval(X)

X’  Randomly selected neighbor of X

E’  Eval(X’)

If E’ ≥ E

X  X’

E  E’

Else with probability p

X  X’

E  E’

How do you set p?

5

25

Setting p

• What if p is too low?

– We don’t make many downhill moves and we
might not get out of many local maxima

• What if p is too high?

– We may be making too many suboptimal
moves

• Should p be constant?

– We might be making too many random moves
when we are near the global maximum

26

• Decrease p as iterations progress

– Accept more downhill moves early, accept fewer

as search goes on

– Intuition: as search progresses, we are moving

towards more promising areas and quite likely

toward a global maximum

• Decrease p as E-E’ increases

– Accept fewer downhill moves if slope is high

– See next slide for intutition

Setting p

27

E’

E

E-E’ is large: we are likely

moving towards a sharp

(interesting) maximum so don’t

move downhill too much

E

E’

E-E’ is small: we are likely

moving towards a smooth

(uninteresting) maximum so

we want to escape this local

maximum

Decreasing p as E-E’ increases

28

Setting p

• Needs a temperature parameter T

• If E’ ≤ E, accept the downhill move with probability p

= e -(E-E’)/T

• Start with high temperature T, (more downhill moves

allowed at the start)

• Decrease T gradually as iterations increase (less

downhill moves allowed)

• Annealing schedule describes how T is decreased at

each step

29

Complete Simulated Annealing

Pseudocode

X  Initial configuration

Iterate:

Do K times:

E  Eval(X)

X’  Randomly selected neighbor of X

E’  Eval(X’)

If E’ ≥ E

X  X’

E  E’

Else with probability p = e –(E-E’)/T

X  X’

E  E’

T = T

Complete Simulated Annealing

Pseudocode

X  Initial configuration

Iterate:

Do K times:

E  Eval(X)

X’  Randomly selected neighbor of X

E’  Eval(X’)

If E’ ≥ E

X  X’

E  E’

Else with probability p = e –(E-E’)/T

X  X’

E  E’

T = T

We keep the temperature fixed

and we iterate K times

Exponential cooling schedule

T(n) =  T(n-1) with 0 <  < 1.

6

31

Convergence

• If the schedule lowers T slowly enough, the

algorithm will find a global optimum with

probability approaching 1

• In practice, reaching the global optimum

could take an enormous number of

iterations

32

The fine print…

• Design of neighborhood is critical

• Lots of parameters to tweak e.g. , K, initial

temperature

• Simulated annealing is usually better than

hillclimbing if you can find the right

parameters

33

3. Beam Search

34

Local Beam Search

Travelling Salesman Problem

A B

CD

A B

CD

Keeps track of k states rather than just 1.

k=2 in this example. Start with k randomly

generated states.

35

Local Beam Search Example

Travelling Salesman Problem (k=2)

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

Generate all successors of all the k states
36

Local Beam Search Example

Travelling Salesman Problem (k=2)

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

None of these is a goal state so we continue

7

Local Beam Search Example

Travelling Salesman Problem (k=2)

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

Select the best k successors from the

complete list 38

Local Beam Search Example

Travelling Salesman Problem (k=2)

A B

CD

A B

CD

Repeat the process until goal found

39

Local Beam Search

• How is this different from k random restarts in

parallel?

• Random-restart search: each search runs

independently of the others

• Local beam search: useful information is passed

among the k parallel search threads

• E.g. One state generates good successors while the

other k-1 states all generate bad successors, then

the more promising states are expanded

40

Local Beam Search

• Disadvantage: all k states can become stuck

in a small region of the state space

• To fix this, use stochastic beam search

• Stochastic beam search:

– Doesn’t pick best k successors

– Chooses k successors at random, with

probability of choosing a given successor being

an increasing function of its value

41

Exercise

You have to move from your old apartment to your new one.
You have the following:

• A list L = {a1, a2, …, an} of n items, each with a size s(ai)
> 0.

• There are M moving boxes available, each with a box
capacity C (assume MC far exceeds the sum of the sizes
of your items). You can put as many items into a box as
long as the sum of their sizes does not exceed the box
capacity C.

Your job is to pack your stuff into as few boxes as possible.
Formulate this as a local search problem.

42

Exercise (continued)

• States?

• Neighborhood?

• Evaluation function?

• How to avoid local maxima?

8

43

4. Genetic Algorithms

44

Genetic Algorithms

• Like natural selection in which an organism

creates offspring according to its fitness for

the environment

• Essentially a variant of stochastic beam

search that combines two parent states (just

like sexual reproduction)

• Over time, population contains individuals

with high fitness

45

Definitions

• Fitness function: Evaluation function in GA

terminology

• Population: k randomly generated states

(called individuals)

• Individual: String over a finite alphabet

4 8 1 5 1 6 2 3 4 2

“chromosome”

“gene”

46

Definitions

• Selection: Pick two random individuals for

reproduction

• Crossover: Mix the two parent strings at the

crossover point

4 8 1 5 1 6 2 3 4 2

5 4 1 7 3 7 3 6 1 7

Crossover point randomly chosen

4 8 1 5 3 7 3 6 1 7

5 4 1 7 1 6 2 3 4 2

Parents Offspring

47

Definitions

• Mutation: randomly change a location in an

individual’s string with a small independent

probability

4 8 1 5 1 6 2 3 4 2

4 8 1 5 1 6 0 3 4 2

Randomness aids in avoiding small local extrema
48

GA Overview

Population = Initial population

Iterate until some individual is fit enough or enough time has elapsed:

NewPopulation = Empty

For 1 to size(Population)

Select pair of parents (P1,P2) using Selection(P,Fitness Function)

Child C = Crossover(P1, P2)

With small random probability, Mutate(C)

Add C to NewPopulation

Population = NewPopulation

Return individual in Population with best Fitness Function

9

49

GA Overview

Population = Initial population

Iterate until some individual is fit enough or enough time has elapsed:

NewPopulation = Empty

For 1 to size(Population)

Select pair of parents (P1,P2) using Selection(P,Fitness Function)

Child C = Crossover(P1, P2)

With small random probability, Mutate(C)

Add C to NewPopulation

Population = NewPopulation

Return individual in Population with best Fitness Function

This pseudocode only

produces one child. Could

also do a variant like before

where we produce 2 children

50

Lots of variants

• Variant 1: Culling - individuals below a

certain threshold are removed

• Variant 2: Selection based on:






PopulationY

YEval

XEval
selectedXP

)(

)(
) (

51

Example: 8-queens

• Fitness Function: number of nonattacking pairs of

queens (28 is the value for the solution)

• Represent 8-queens state as an 8 digit string in

which each digit represents position of queen

3 2 7 5 2 4 1 1

52

Example: 8-queens

53

Example: 8-queens (Fitness

Function)

Values of Fitness Function

Probability of selection

(proportional to fitness score)

54

Example: 8-queens (Selection)

Notice 3 2 7 5 2 4 1 1 is selected twice while

3 2 5 4 3 2 1 3 is not selected at all

10

55

Example: 8-queens (Crossover)

3 2 7 5 2 4 1 1 2 4 7 4 8 5 5 2 3 2 7 4 8 5 5 2 56

Example: 8-queens (Mutation)

Mutation corresponds to randomly selecting a

queen and randomly moving it in its column

57

Implementation details on Genetic

Algorithms

• Initially, population is diverse and crossover

produces big changes from parents

• Over time, individuals become quite similar and

crossover doesn’t produce such a big change

• Crossover is the big advantage:

– Preserves a big block of “genes” that have evolved

independently to perform useful functions

– E.g. Putting first 3 queens in positions 2, 4, and 6 is a

useful block

58

Schemas

• A substring in which some of the positions

can be left unspecified eg. 246*****

• Instances: strings that match the schema

• If the average fitness of the instances of a

schema is above the mean, then the number

of instances of the schema within the

population will grow over time

59

Schemas

• Schemas are important if contiguous blocks

provide a consistent benefit

• Genetic algorithms work best when

schemas correspond to meaningful

components of a solution

60

The fine print…

• The representation of each state is critical to

the performance of the GA

• Lots of parameters to tweak but if you get

them right, GAs can work well

• Limited theoretical results (skeptics say it’s

just a big hack)

11

61

5. Gradient Descent

62

Discrete Environments

X  Initial configuration

Iterate:

E  Eval(X)

N  Neighbors(X)

For each Xi in N

Ei  Eval(Xi)

E*  Highest Ei

X*  Xi with highest Ei

If E* > E

X  X*

Else

Return X

• In discrete state spaces, the #

of neighbors is finite.

• What if there is a continuum

of possible moves leading to

an infinite # of neighbors?

Hillclimbing pseudocode

63

Local Search in Continuous State

Spaces

• Almost all real world problems involve

continuous state spaces

• To perform local search in continuous state

spaces, you need techniques from calculus

• The main technique to find a minimum is

called gradient descent (or gradient ascent if

you want to find the maximum)

64

Gradient Descent

• What is the gradient of a function f(x)?

– Usually written as

– (the gradient itself) represents the

direction of the steepest slope

– (the magnitude of the gradient) tells

you how big the steepest slope is

)()(xf
x

xf





)(xf

|)(| xf

65

Gradient Descent

Suppose we want to find a local minimum of

a function f(x). We use the gradient descent

rule:

 xxx f 
α is the learning rate, which is

usually a small number like 0.05

Suppose we want to find a local maximum of

a function f(x). We use the gradient ascent

rule:

 xxx f 

66

Gradient Descent Examples

These pictures were taken

from Wolfram Mathworld

22)(23  xxxf

12

67

Question of the Day

• Why not just calculate the global optimum

using ?

– May not be able to solve this equation in closed

form

– If you can’t solve it globally, you can still

compute the gradient locally (like we are doing

in gradient descent)

0)( xf

68

Multivariate Gradient Descent

• What happens if your function is multivariate eg.

f(x1,x2,x3)?

• Then

• The gradient descent rule becomes:

























321

321 ,,),,(
x

f

x

f

x

f
xxxf

1

11
x

f
xx




 

2

22
x

f
xx




 

3

33
x

f
xx




 

69

Multivariate Gradient Ascent

Pictures taken from

Wikipedia entry on

gradient descent

70

More About the Learning Rate

• If α is too large

– Gradient descent overshoots the optimum point

• If α is too small

– Gradient descent requires too many steps and

will take a very long time to converge

71

Weaknesses of Gradient Descent

1. Can be very slow to converge to a local

optimum, especially if the curvature in

different directions is very different

2. Good results depend on the value of the

learning rate α

3. What if the function f(x) isn’t

differentiable at x?

72

What You Should Know

• Be able to formulate a problem as a local

search problem

• Know the difference between local search

and uninformed and informed search

• Know how hillclimbing works

• Know how simulated annealing works

• Know the pros and cons of both methods

13

73

What you should know

• Be able to formulate a problem as a Genetic

Algorithm

• Understand what crossover and mutation do and why

they are important

• Differences between hillclimbing, simulated

annealing, local beam search, and genetic algorithms

• Understand how gradient descent works, including its

strengths and weaknesses

• Understand how to derive the gradient descent rule

