CS 331: Artificial Intelligence Naïve Bayes

Thanks to Andrew Moore for some course material

Naïve Bayes

2

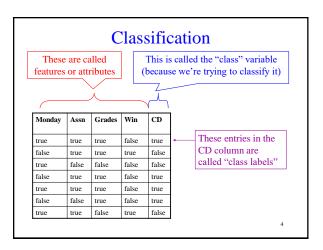
- · A special type of Bayesian network
- Makes a conditional independence assumption
- Typically used for classification

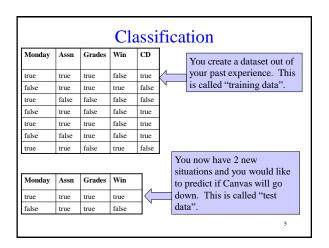
Classification

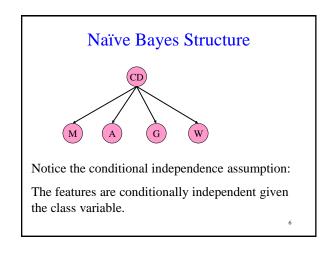
Suppose you are trying to classify situations that determine whether or not Canvas will be down. You've come up with the following list of variables (which are all Boolean):

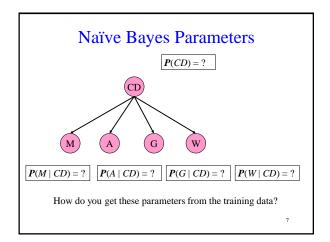
Monday	Is a Monday
Assn	CS331 assignment due
Grades	CS331 instructor needs to enter grades
Win	The Beavers won the football game

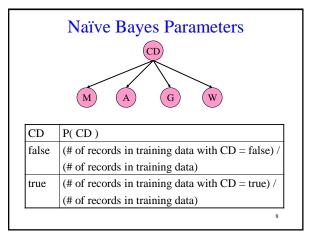
We also have a Boolean variable called CD which stands for "Canvas down"

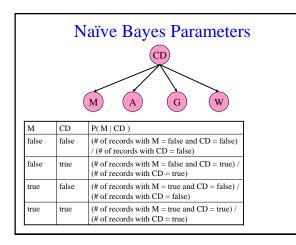


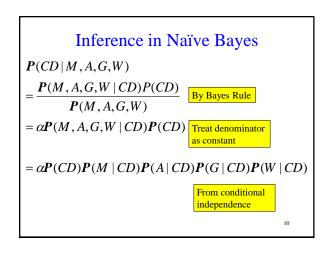












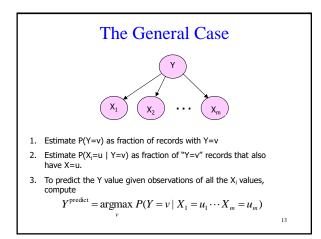
Prediction

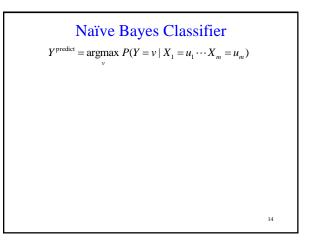
- Suppose you are now in a day when M=true, A=true, G=true, W=true.
- You need to predict if CD=true or CD=false.
- We will use the notation that CD=true is equivalent to cd and CD=false is equivalent to \neg cd.

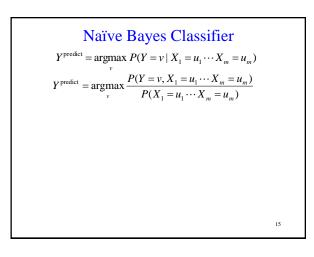
11

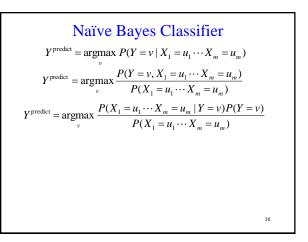
Prediction

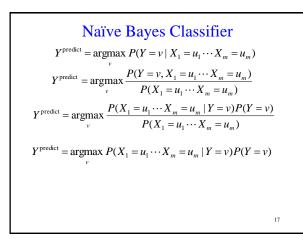
- You need to compare:
 - $\begin{array}{l} \ P(\ cd \mid m, \, a, \, g, \, w \) = \alpha \ P(\ cd \) \ P(\ m \mid cd \) \ P(\ a \mid cd \) \\ cd \) \ P(\ g \mid cd \) \ P(\ w \mid cd \) \end{array}$
 - $\begin{array}{l} -P(\neg cd \mid m,\,a,\,g,\,w)=\alpha \ P(\neg cd \) \ P(\ m \mid \neg cd \) \ P(\\ a \mid \neg cd \) \ P(\ g \mid \neg cd \) \ P(\ w \mid \neg cd \) \end{array}$
- Whichever probability is the bigger of the two above, that is your prediction for CD
- Because you take the max of the two probabilities above, you can ignore α (since it is the same in both)

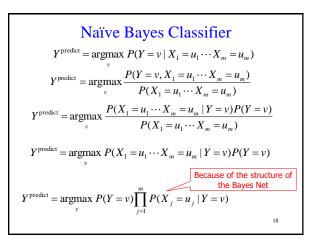












Technical Point #1

- The probabilities $P(X_j = u_j | Y = v)$ can sometimes be really small
- This can result in numerical instability since floating point numbers are not represented exactly on any computer architecture
- To get around this, use the log of the last line in the previous slide i.e.

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} \left[\log(P(Y=v)) + \sum_{j=1}^{m} \log(P(X_j = u_j | Y = v)) \right]$$

Technical Point #2

- When estimating parameters, what happens if you don't have any records that match a certain combination of features?
- For example, in our training data, we didn't have M=false, A=false, G=false, W=false
- This means that $P(X_j = u_j | Y = v)$ in the formula below will be 0 and the entire expression will be 0.

$$P(Y = v) \prod_{j=1}^{m} P(X_j = u_j | Y = v)$$

Even more horrible
things happen if you
had this expression in
log space

Uniform Dirichlet Priors

Let N_j be the number of values that X_j can take on.

$$P(X_j = u_j | Y = v) = \frac{(\text{#records with } X_j = u_j \text{ and } Y = v) + 1}{(\text{# records with } Y = v) + N_j}$$

What happens when you have no records with Y = v?

$$P(X_j = u_j \mid Y = v) = \frac{1}{N_j}$$

This means that each value of X_j is equally likely in the absence of data. If you have a lot of data, it dominates the $1/N_j$ value. We call this trick a "uniform Dirichlet prior".

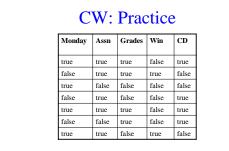
21

Linumpie					
Monday	Assn	Grades	Win	CD	
true	true	true	false	true	
false	true	true	true	false	
true	false	false	false	false	
false	true	false	false	true	
true	true	true	false	true	
false	false	true	false	true	
true	true	false	true	false	

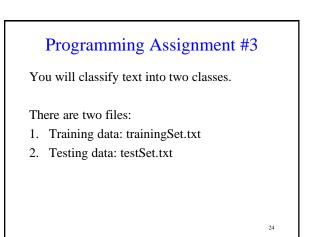
Example

Compute P(M|CD) using uniform Dirichlet priors

22



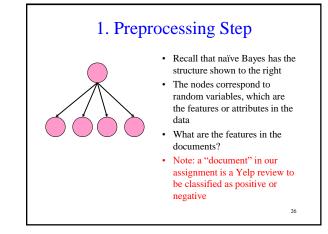
Compute P(W=true|CD=true) using uniform Dirichlet priors



Programming Assignment #3

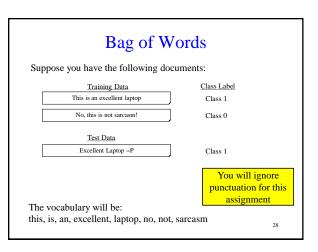
Two parts to this assignment:

- 1. Pre-processing step
- 2. Classification step



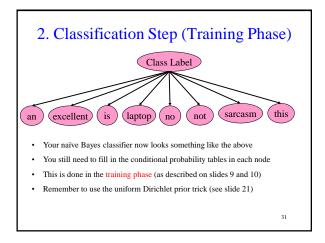
The Vocabulary The features of the documents will be the presence/absence of words in the vocabulary The vocabulary is the list of words that are known to the classifier Ideally, the vocabulary would be all the words in the English language For this assignment, you will form the vocabulary using all the words in the training data

27



Vocab: this,	is, an, excellent, laptop, no, not, sarcasm
\bigcup	Keep this in alphabetical order to help with debugging
Vocab: an, e	excellent, is, laptop, no, not, sarcasm, this

Ne	xt, conve	rt y	our tra	inin	g an	d test da	ata int	o features
<u>Trai</u>	ning Data							
an	excellent	is	laptop	no	not	sarcasm	this	Class Label
1	1	1	1	0	0	0	1	1
0	0	1	0	1	1	1	1	0
Test	Data							
an	excellent	is	laptop	no	not	sarcasm	this	Class Label
0	1	0	1	0	0	0	0	1
ou v						a in featu on this		rm, with the features



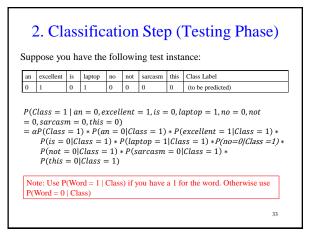
2. Classification Step (Testing Phase)

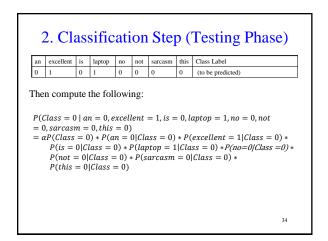
Testing phase

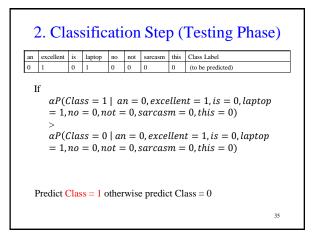
- · Load the featurized test data
- For each document in the test data, predict its class label

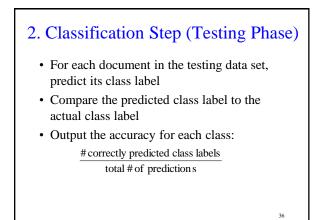
32

 This requires computing: P(Class label | Words in document)









Results

There are two sets of results we require:

- 1. Results #1:
 - Use trainingSet.txt for the training phase
 - Use trainingSet.txt for the testing phase
 - Report accuracy
- 2. Results #2:
 - Use trainingSet.txt for the training phase
 - Use testSet.txt for the testing phase
 - Report accuracy

37

What You Should Know

- How to learn the parameters for a Naïve Bayes model
- How to make predictions with a Naïve Bayes model
- How to implement a Naïve Bayes Model