CS 331: Artificial Intelligence Fundamentals of Probability II

Full Joint Probability Distributions

Coin	Card	Candy	$\mathbf{P}($ Coin, Card, Candy $)$
tails	black	1	0.15
tails	black	2	0.06
tails	black	3	0.09
tails	red	1	0.02
tails	red	2	0.06
tails	red	3	0.12
heads	black	1	0.075
heads	black	2	0.03
heads	black	3	0.045
heads	red	1	0.035
heads	red	2	0.105
heads	red	3	0.21

Joint Probability Distribution

From the full joint probability distribution, we can calculate any probability involving these three random variables.
e.g. $\mathrm{P}($ Coin $=$ heads OR Card $=$ red $)$

Joint Probability Distribution

$\mathrm{P}($ Coin $=$ heads OR Card $=$ red $)=$
$\mathrm{P}($ Coin=heads, Card=black, Candy=1) + $\mathrm{P}($ Coin=heads, Card=black, Candy=2) + $\mathrm{P}($ Coin=heads, Card=black, Candy=3) + $\mathrm{P}($ Coin=tails, Card=red, Candy=1 $)+$ $\mathrm{P}($ Coin=tails, Card=red, Candy=2 $)+$ $\mathrm{P}($ Coin=tails, Card=red, Candy=3 $)+$ P(Coin=heads, Card=red, Candy=1) + P(Coin=heads, Card=red, Candy=2) + P(Coin=heads, Card=red, Candy=3)
$=0.075+0.03+0.045+0.02+0.06+0.12+0.035+0.105+$
$0.21=0.7$

Marginalization

We can even calculate marginal probabilities (the probability distribution over a subset of the variables) e.g.:
$\mathrm{P}($ Coin $=$ tails, Card $=$ red $)=$
$\mathrm{P}($ Coin $=$ tails, Card $=$ red, Candy $=1)+$ $\mathrm{P}($ Coin=tails, Card $=$ red, Candy $=2)+$ $\mathrm{P}($ Coin $=$ tails, Card $=$ red, Candy $=3$)
$=0.02+0.06+0.12=0.2$

Marginalization

Or even:
$\mathrm{P}($ Card $=$ black $)=$
P(Coin=heads, Card=black, Candy=1) + $\mathrm{P}($ Coin=heads, Card=black, Candy=2 $)+$
$\mathrm{P}($ Coin=heads, Card=black, Candy=3 $)+$
$\mathrm{P}($ Coin=tails, Card=black, Candy=1) +
$\mathrm{P}($ Coin=tails, Card=black, Candy=2 $)+$
$\mathrm{P}($ Coin=tails, Card=black, Candy=3)
$=0.075+0.03+0.045+0.015+0.06+0.09=0.315$

Marginalization

The general marginalization rule for any sets of variables \boldsymbol{Y} and \boldsymbol{Z} :

$$
\begin{aligned}
& \boldsymbol{P}(\boldsymbol{Y})=\sum_{\mathbf{z}} \boldsymbol{P}(\boldsymbol{Y}, \mathbf{z}) \\
& \text { or } \\
& \boldsymbol{P}(\boldsymbol{Y})=\sum_{\mathbf{z}} \boldsymbol{P}(\boldsymbol{Y} \mid \mathbf{z}) P(\mathbf{z})
\end{aligned}
$$

Marginalization

For continuous variables, marginalization involves taking the integral:

$$
\boldsymbol{P}(\boldsymbol{Y})=\int \boldsymbol{P}(\boldsymbol{Y}, \mathbf{z}) d \mathbf{z}
$$

CW: Practice

Compute $P($ Candy $=2)$

Coin	Card	Candy	$\mathbf{P}($ Coin, Card, Candy $)$
tails	black	1	0.15
tails	black	2	0.06
tails	black	3	0.09
tails	red	1	0.02
tails	red	2	0.06
tails	red	3	0.12
heads	black	1	0.075
heads	black	2	0.03
heads	black	3	0.045
heads	red	1	0.035
heads	red	2	0.105
heads	red	3	0.21

Conditional Probabilities

We can also compute conditional probabilities from the joint. Recall:

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

Conditional Probabilities

$$
\begin{aligned}
& P(\text { Coin }=\text { heads } \mid \text { Card }=\text { black }) \\
& =\frac{P(\text { Coin }=\text { heads }, \text { Card }=\text { black })}{P(\text { Card }=\text { black })} \\
& =\frac{0.075+0.03+0.045}{0.15+0.06+0.09+0.075+0.03+0.045}=0.333 \\
& P(\text { Coin }=\text { tails } \mid \text { Card }=\text { black }) \\
& =\frac{P(\text { Coin }=\text { tails }, \text { Card }=\text { black })}{P(\text { Card }=\text { black })} \\
& =\frac{0.15+0.06+0.09}{0.15+0.06+0.09+0.075+0.03+0.045}=0.667
\end{aligned}
$$

Conditional Probabilities

$$
\begin{aligned}
& P(\text { Coin }=\text { heads } \mid \text { Card }=\text { black }) \\
& =\frac{P(\text { Coin }=\text { heads }, \text { Card }=\text { black })}{P(\text { Card }=\text { black })} \\
& =\frac{0.075+0.03+0.045}{0.15+0.06+0.09+0.075+0.03+0.045}=0.333 \\
& P(\text { Coin }=\text { tails } \mid \text { Card }=\text { black }) \\
& =\frac{P(\text { Coin }=\text { tails }, \text { Card }=\text { black })}{P(\text { Card }=\text { black })} \\
& =\frac{1}{0.15+0.06+0.09} \\
& \begin{array}{l}
\text { Note th } \\
\text { remaina } \\
\text { reme } \\
\text { the two }
\end{array}
\end{aligned}
$$

Normalization

- In fact, $1 / \mathrm{P}($ Card $)$ can be viewed as a normalization constant for $\boldsymbol{P}($ Coin \mid Card $)$, ensuring it adds up to 1
- We will refer to normalization constants with the symbol α

$$
\boldsymbol{P}(\text { Coin } \mid \text { black })=\alpha \boldsymbol{P}(\text { Coin }, \text { black })
$$

CW: Practice

Coin	Card	Candy	P(Coin, Card, Candy
tails	black	1	0.15
tails	black	2	0.06
tails	black	3	0.09
tails	red	1	0.02
tails	red	2	0.06
tails	red	3	0.12
heads	black	1	0.075
heads	black	2	0.03
heads	black	3	0.045
heads	red	1	0.035
heads	red	2	0.105
heads	red	3	0.21

Inference

- Suppose you get a query such as
$\mathrm{P}($ Card $=$ red \mid Coin $=$ heads $)$

Coin is called the evidence variable because we observe it. More generally, it's a set of variables.

Card is called the query variable (we'll assume it's a single variable for now)

There are also unobserved (aka hidden) variables like Candy

Inference

- We will write the query as $\boldsymbol{P}(X \mid \boldsymbol{e})$

This is a probability distribution hence the boldface
$X=$ Query variable (a single variable for now)
$\boldsymbol{E}=$ Set of evidence variables
$\boldsymbol{e}=$ the set of observed values for the evidence variables
$\boldsymbol{Y}=$ Unobserved variables

Inference

We will write the query as $\boldsymbol{P}(X \mid \boldsymbol{e})$

$$
\begin{aligned}
& \qquad \boldsymbol{P}(X \mid \boldsymbol{e})=\alpha \boldsymbol{P}(X, \boldsymbol{e})=\alpha \sum_{\boldsymbol{y}} \boldsymbol{P}(X, \boldsymbol{e}, \boldsymbol{y}) \\
& \begin{array}{l}
\text { Summation is over all possible } \\
\text { combinations of values of the } \\
\text { unobserved variables } \boldsymbol{Y}
\end{array}
\end{aligned}
$$

$X=$ Query variable (a single variable for now)
$\boldsymbol{E}=$ Set of evidence variables
$\boldsymbol{e}=$ the set of observed values for the evidence variables
$\boldsymbol{Y}=$ Unobserved variables

$$
\begin{gathered}
\text { Inference } \\
\boldsymbol{P}(X \mid \boldsymbol{e})=\alpha \boldsymbol{P}(X, \boldsymbol{e})=\alpha \sum_{y} \boldsymbol{P}(X, \boldsymbol{e}, \boldsymbol{y})
\end{gathered}
$$

Computing $\boldsymbol{P}(X \mid \boldsymbol{e})$ involves going through all possible entries of the full joint probability distribution and adding up probabilities with $X=x_{i}$, $\boldsymbol{E}=\boldsymbol{e}$, and $\boldsymbol{Y}=\boldsymbol{y}$

Suppose you have a domain with n Boolean
variables. What is the space and time complexity of computing $\mathrm{P}(X \mid e)$?

Independence

- How do you avoid the exponential space and time complexity of inference?
- Use independence (aka factoring)

Independence

We say that variables X and Y are independent if any of the following hold: (note that they are all equivalent)

$$
\begin{aligned}
& \boldsymbol{P}(X \mid Y)=\boldsymbol{P}(X) \text { or } \\
& \boldsymbol{P}(Y \mid X)=\boldsymbol{P}(Y) \text { or } \\
& \boldsymbol{P}(X, Y)=\boldsymbol{P}(X) \boldsymbol{P}(Y)
\end{aligned}
$$

Independence

Consider the full joint distribution over these variables:
Card $=\{$ red, black $\}$
Candy $=\{1,2,3\}$
By the product rule, we know:

$$
\begin{aligned}
& \text { P(Card, Candy) } \\
& =P(\text { Card } \mid \text { Candy }) P(\text { Candy })
\end{aligned}
$$

Independence

Suppose I tell you that these two events are independent (i.e. they do not influence each other).

Then:

$$
\begin{aligned}
& P(\text { Card }, \text { Candy }) \\
& =P(\text { Card } \mid \text { Candy }) P(\text { Candy }) \\
& =P(\text { Card }) P(\text { Candy })
\end{aligned}
$$

Why is independence useful?

$P($ Card, Candy $)=P($ Card $) P($ Candy $)$

This table has 2 values
This table has 3 values

- You now need to store 5 values to calculate \boldsymbol{P} (Coin, Card, Candy)
- Without independence, we needed 6

Independence

Another example:

- Suppose you have n coin flips and you want to calculate the joint distribution $\boldsymbol{P}\left(C_{l}, \ldots, C_{n}\right)$
- If the coin flips are not independent, you need 2^{n} values in the table
- If the coin flips are independent, then

$$
P\left(C_{1}, \ldots, C_{n}\right)=\prod_{i=1}^{n} P\left(C_{i}\right)<\begin{gathered}
\text { Each } \mathrm{P}\left(C_{i}\right) \text { table has } 2 \\
\text { entries and there are } n \text { of } \\
\text { them for a total of } 2 n \text { values }
\end{gathered}
$$

Independence

- Independence is powerful!
- It required extra domain knowledge. A different kind of knowledge than numerical probabilities. It needed an understanding of relationships among the random variables.

CW: Practice

Are Coin and Card independent in this distribution?

Recall:
$\boldsymbol{P}(X \mid Y)=\boldsymbol{P}(X)$
$\boldsymbol{P}(Y \mid X)=\boldsymbol{P}(Y)$
$\boldsymbol{P}(X, Y)=\boldsymbol{P}(X) \boldsymbol{P}(Y)$
for independent X and Y

