CS 331: Artificial Intelligence
Fundamentals of Probability II

Thanks to Andrew Moore for some course material

Full Joint Probability Distributions

The probabilities

in the last column

sumto 1

Coin | Card | Candy P(Coin, Card, Candy)
tails black |1 0.15
tails black |2 0.06
tails black |3 0.09
tails red 1 0.02
tails red 2 0.06
tails red 3 0.12
heads | black |1 0.075
heads | black |2 0.03
heads | black |3 0.045
heads | red 1 0.035
heads | red 2 0.105
heads | red 3 0.21

—

This cell means P(Coin=heads, Card=red, Candy=3) = 0.21




Joint Probability Distribution

From the full joint probability distribution, we can calculate any
probability involving these three random variables.

e.g. P(Coin = heads OR Card = red)

Joint Probability Distribution
P(Coin = heads OR Card = red) =

P( Coin=heads, Card=black, Candy=1) +
P( Coin=heads, Card=black, Candy=2) +
P( Coin=heads, Card=black, Candy=3) +
P( Coin=tails, Card=red, Candy=1) +

P( Coin=tails, Card=red, Candy=2) +

P( Coin=tails, Card=red, Candy=3) +

P( Coin=heads, Card=red, Candy=1) +
P( Coin=heads, Card=red, Candy=2) +
P( Coin=heads, Card=red, Candy=3)

=0.075+0.03 + 0.045 + 0.02 + 0.06 + 0.12 + 0.035 + 0.105 +
0.21=0.7




Marginalization

We can even calculate marginal probabilities
(the probability distribution over a subset of the
variables) e.g.:

P(Coin=tails, Card=red ) =
P(Coin=tails, Card=red, Candy=1) +
P(Coin=tails, Card=red, Candy=2) +
P(Coin=tails, Card=red, Candy=3)
=0.02+0.06+0.12=0.2

Marginalization

Or even:

P( Card=black) =

P( Coin=heads, Card=Dblack, Candy=1) +
P( Coin=heads, Card=black, Candy=2) +
P( Coin=heads, Card=black, Candy=3) +
P( Coin=tails, Card=black, Candy=1) +
P(Coin=tails, Card=black, Candy=2) +
P(Coin=tails, Card=black, Candy=3)

=0.075+0.03 +0.045 + 0.015 + 0.06 + 0.09 = 0.315




Marginalization

The general marginalization rule for any sets
of variables Y and Z:

P(Y)=> P(Y,2)
z —_ z is over all possible
combinations of values of Z
or (remember Z is a set)

P(Y)=> P(Y|2)P(2)

Marginalization

For continuous variables, marginalization
involves taking the integral:

P(Y)=[P(Y,2)dz




CW: Practice

Coin | Card | Candy P(Coin, Card, Candy)
Compute tails black |1 0.15
tails black |2 0.06
P(Candy = 2). tails | black |3 0.09
tails red 1 0.02
tails red 2 0.06
tails red 3 0.12
heads | black |1 0.075
heads | black |2 0.03
heads | black |3 0.045
heads | red 1 0.035
heads | red 2 0.105
heads | red 3 0.21

Conditional Probabilities

We can also compute conditional probabilities
from the joint. Recall:

P(A,B)




Conditional Probabilities

P(Coin = heads|Card = black)

__ P(Coin=heads,Card=black)

P(Card=black)
0.075+4+0.03+0.045

- 0.1540.064+0.0940.0754+0.0340.045 =0.333
P(Coin = tails|Card = black)
__ P(Coin=tails,Card=black)
P(Card=black)
_ 0.15+4+0.06+0.09 — 0.667

 0.15+0.06+0.09+0.075+0.03+0.045

Conditional Probabilities

P(Coin = heads|Card = black)

__ P(Coin=heads,Card=black)

P(Card=black)

_ 0.075+0.03+0.045 — 0.333
© 0.15+0.06+0.09+0.075+0.03+0.045

Note that

P(Coin = tails|Card = black) \V/P(Card=black)
remains constant in

__ P(Coin=tails,Card=black) the two equations.

P(Card=black)
0.15+0.06+0.09

 0.15+0.06+0.09+0.075+0.03+0.045

— 0.667




Normalization

* In fact, 1/P(Card) can be viewed as a
normalization constant for P(Coin| Card),
ensuring it adds up to 1

* We will refer to normalization constants
with the symbol o

P(Coin|black) = aP(Coin, black)
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CW: Practice

Coin | Card | Candy | P(Coin, Card, Candy)
Compute tails | black |1 0.15
P(Candy = 1|Card = red). |tails |black |2 0.06
tails black |3 0.09
tails red 1 0.02
tails red 2 0.06
tails red 3 0.12
heads | black |1 0.075
heads | black |2 0.03
heads | black |3 0.045
heads | red 1 0.035
heads | red 2 0.105
heads | red 3 0.21
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Inference

 Suppose you get a query such as
P(Card = red | Coin = heads)

Coin is called the evidence variable
because we observe it. More generally,
it’s a set of variables.

Card is called the query variable (we’ll
assume it’s a single variable for now)

There are also unobserved (aka hidden) variables like Candy
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Inference

« We will write the query as P(X | )

This is a probability distribution
hence the boldface

X = Query variable (a single variable for now)
E = Set of evidence variables
e = the set of observed values for the evidence variables

Y = Unobserved variables
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Inference

We will write the query as P(X | e)
P(X|e)=aP(X,e)=a) P(X,e,Y)
y

Summation is over all possible /
combinations of values of the
unobserved variables Y

X = Query variable (a single variable for now)
E = Set of evidence variables
e = the set of observed values for the evidence variables

Y = Unobserved variables

Inference
P(X|e)=aP(X,e)=a) P(X,e,y)

Computing P(X | e) involves going through all
possible entries of the full joint probability
distribution and adding up probabilities with X=x;,
E=e, and Y=y

Suppose you have a domain with n Boolean
variables. What is the space and time complexity of
computing P(X | e)?
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Independence

« How do you avoid the exponential space
and time complexity of inference?

« Use independence (aka factoring)
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Independence

We say that variables X and Y are
independent if any of the following hold:
(note that they are all equivalent)

P(X|Y)=P(X) or
PY|X)=P(Y) or
P(X,Y)=P(X)P(Y)
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Independence

Consider the full joint distribution over these
variables:

Card = {red, black}
Candy = {1,2,3}

By the product rule, we know:
P(Card, Candy)
= P(Card|Candy)P(Candy)
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Independence

Suppose [ tell you that these two events are
independent (i.e. they do not influence each other).

Then:
P(Card, Candy)

= P(Card|Candy)P(Candy)
= P(Card)P(Candy)
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Why is independence useful?

P(Card,Candy) = P(Card)P(Candy)

7/ \//
This table has 2 values This table has 3 values

* You now need to store 5 values to calculate P(Coin, Card,
Candy)

» Without independence, we needed 6
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Independence

Another example:

« Suppose you have n coin flips and you want to
calculate the joint distribution P(C,, ..., C,)

« If the coin flips are not independent, you need 2"
values in the table

« If the coin flips are independent, then

n
P(C,....C,) =] [ P(C) Each P(C;) table has 2
i—1 entries and there are n of
them for a total of 2n values
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Independence

« Independence is powerful!

« It required extra domain knowledge. A
different kind of knowledge than numerical
probabilities. It needed an understanding of
relationships among the random variables.
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CW:

Are Coin and Card
independent in this

distribution?
Recall:
P(X|Y)=P(X)
P(Y | X)=P(Y)

P(X,Y)=P(X)P(Y)

Practice

Coin | Card | Candy | P(Coin, Card, Candy)
tails black |1 0.15
tails black |2 0.06
tails black |3 0.09
tails red 1 0.02
tails red 2 0.06
tails red 3 0.12
heads | black |1 0.075
heads | black |2 0.03
heads | black |3 0.045
heads | red 1 0.035
heads | red 2 0.105
heads | red 3 0.21

for independent X and Y
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