CS 331: Artificial Intelligence Fundamentals of Probability II

Thanks to Andrew Moore for some course material

Full Joint Probability Distributions

Coin	Card	Candy	P(Coin, Card, Candy)
tails	black	1	0.15
tails	black	2	0.06
tails	black	3	0.09
tails	red	1	0.02
tails	red	2	0.06
tails	red	3	0.12
heads	black	1	0.075
heads	black	2	0.03
heads	black	3	0.045
heads	red	1	0.035
heads	red	2	0.105
heads	red	3	0.21

The probabilities

This cell means P(Coin=heads, Card=red, Candy=3) = 0.21

Joint Probability Distribution

From the full joint probability distribution, we can calculate any probability involving these three random variables.

e.g. P(Coin = heads OR Card = red)

Joint Probability Distribution

P(Coin = heads OR Card = red) =

P(Coin=heads, Card=black, Candy=1)+

P(Coin=heads, Card=black, Candy=2)+

P(Coin=heads, Card=black, Candy=3)+

P(Coin=tails, Card=red, Candy=1)+

P(Coin=tails, Card=red, Candy=2)+

P(Coin=tails, Card=red, Candy=3)+ P(Coin=heads, Card=red, Candy=1)+

P(Coin=heads, Card=red, Candy=2)+

P(Coin=heads, Card=red, Candy=3)

= 0.075 + 0.03 + 0.045 + 0.02 + 0.06 + 0.12 + 0.035 + 0.105 +0.21 = 0.7

Marginalization

We can even calculate marginal probabilities (the probability distribution over a subset of the variables) e.g.:

P(Coin=tails, Card=red) =

P(Coin=tails, Card=red, Candy=1) +

P(Coin=tails, Card=red, Candy=2) +

P(Coin=tails, Card=red, Candy=3)

= 0.02 + 0.06 + 0.12 = 0.2

Marginalization

Or even:

P(Card=black) =

P(Coin=heads, Card=black, Candy=1) +

P(Coin=heads, Card=black, Candy=2)+

P(Coin=heads, Card=black, Candy=3)+

P(Coin=tails, Card=black, Candy=1) +

P(Coin=tails, Card=black, Candy=2)+

P(Coin=tails, Card=black, Candy=3)

= 0.075 + 0.03 + 0.045 + 0.015 + 0.06 + 0.09 = 0.315

Marginalization

The general marginalization rule for any sets of variables Y and Z:

$$P(Y) = \sum_{\mathbf{z}} P(Y, \mathbf{z})$$
or
 \mathbf{z} is over all possible combinations of values of \mathbf{Z} (remember \mathbf{Z} is a set)

$$P(Y) = \sum_{\mathbf{z}} P(Y \mid \mathbf{z}) P(\mathbf{z})$$

Marginalization

For continuous variables, marginalization involves taking the integral:

$$P(Y) = \int P(Y, \mathbf{z}) d\mathbf{z}$$

CW: Practice

Compute P(Candy = 2)

Coin	Card	Candy	P(Coin, Card, Candy)
tails	black	1	0.15
tails	black	2	0.06
tails	black	3	0.09
tails	red	1	0.02
tails	red	2	0.06
tails	red	3	0.12
heads	black	1	0.075
heads	black	2	0.03
heads	black	3	0.045
heads	red	1	0.035
heads	red	2	0.105
heads	red	3	0.21

Conditional Probabilities

We can also compute conditional probabilities from the joint. Recall:

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

Conditional Probabilities

$$P(Coin = heads | Card = black)$$

 $= \frac{P(Coin=heads,Card=black)}{}$

P(Card=black) 0.075+0.03+0.045

 $= \frac{0.37370.0370.037}{0.15+0.06+0.09+0.075+0.03+0.045} = 0.333$

P(Coin = tails | Card = black)

 $= \frac{P(Coin=tails,Card=black)}{}$

P(Card=black) 0.15+0.06+0.09

 $\frac{0.15 + 0.06 + 0.09 + 0.075 + 0.03 + 0.045}{0.15 + 0.06 + 0.09 + 0.075 + 0.03 + 0.045} = 0.667$

Conditional Probabilities

P(Coin = heads | Card = black)

 $= \frac{P(Coin=heads,Card=black)}{}$

P(Card=black) 0.075+0.03+0.045

 $\frac{0.075 + 0.03 + 0.043}{0.15 + 0.06 + 0.09 + 0.075 + 0.03 + 0.045} = 0.333$

P(Coin = tails | Card = black)

P(Coin=tails,Card=black)

P(Card=black)

0.15 + 0.06 + 0.090.15+0.06+0.09+0.075+0.03+0.045

= 0.667

Note that 1/P(Card=black)

remains constant in

the two equations.

Normalization

- In fact, 1/P(*Card*) can be viewed as a normalization constant for *P*(*Coin*| *Card*), ensuring it adds up to 1
- We will refer to normalization constants with the symbol α

 $P(Coin|black) = \alpha P(Coin, black)$

13

CW: Practice

Compute P(Candy = 1 | Card = red).

Coin	Card	Candy	P(Coin, Card, Candy)		
tails	black	1	0.15		
tails	black	2	0.06		
tails	black	3	0.09		
tails	red	1	0.02		
tails	red	2	0.06		
tails	red	3	0.12		
heads	black	1	0.075		
heads	black	2	0.03		
heads	black	3	0.045		
heads	red	1	0.035		
heads	red	2	0.105		
heads	red	3	0.21		
			14		

14

Inference

• Suppose you get a query such as

 $P(Card = red \mid Coin = heads)$

Coin is called the evidence variable because we observe it. More generally, it's a set of variables.

Card is called the query variable (we'll assume it's a single variable for now)

There are also unobserved (aka hidden) variables like *Candy*

15

Inference

• We will write the query as P(X | e)

This is a probability distribution hence the boldface

X = Query variable (a single variable for now)

E = Set of evidence variables

e = the set of observed values for the evidence variables

Y = Unobserved variables

16

Inference

We will write the query as $P(X \mid e)$

$$P(X | e) = \alpha P(X, e) = \alpha \sum P(X, e, y)$$

Summation is over all possible combinations of values of the unobserved variables *Y*

X =Query variable (a single variable for now)

E = Set of evidence variables

e = the set of observed values for the evidence variables

Y = Unobserved variables

Inference

$$P(X \mid e) = \alpha P(X, e) = \alpha \sum_{y} P(X, e, y)$$

Computing $P(X \mid e)$ involves going through all possible entries of the full joint probability distribution and adding up probabilities with $X=x_i$, E=e, and Y=y

Suppose you have a domain with n Boolean variables. What is the space and time complexity of computing $P(X \mid e)$?

18

Independence

- How do you avoid the exponential space and time complexity of inference?
- Use independence (aka factoring)

Independence

We say that variables X and Y are independent if any of the following hold: (note that they are all equivalent)

$$P(X | Y) = P(X)$$
 or $P(Y | X) = P(Y)$ or $P(X, Y) = P(X)P(Y)$

Independence

Consider the full joint distribution over these variables:

 $Card = \{red, black\}$ *Candy* = $\{1, 2, 3\}$

By the product rule, we know:

P(Card, Candy) = P(Card|Candy)P(Candy)

21

Independence

Suppose I tell you that these two events are independent (i.e. they do not influence each other).

Then:

P(Card, Candy)= P(Card|Candy)P(Candy)

= P(Card)P(Candy)

22

Why is independence useful?

$$P(Card, Candy) = P(Card)P(Candy)$$
This table has 2 values

This table has 3 values

- You now need to store 5 values to calculate P(Coin, Card,
- · Without independence, we needed 6

23

Independence

Another example:

- Suppose you have n coin flips and you want to calculate the joint distribution $P(C_1, ..., C_n)$
- If the coin flips are not independent, you need 2ⁿ values in the table
- · If the coin flips are independent, then

$$P(C_1,...,C_n) = \prod_{i=1}^{n} P(C_i)$$
Each $P(C_i)$ table has 2 entries and there are n of them for a total of $2n$ value.

them for a total of 2n values

Independence

- Independence is powerful!
- It required extra domain knowledge. A different kind of knowledge than numerical probabilities. It needed an understanding of relationships among the random variables.

25

CW: Practice

Are Coin and Card independent in this distribution?

distribution?

Recall:

P(X | Y) = P(X)P(Y | X) = P(Y)

P(X,Y) = P(X)P(Y) heads red 2 heads red 3

for independent X and Y

Coin	Card	Candy	P(Coin, Card, Candy)			
tails	black	1	0.15			
tails	black	2	0.06			
tails	black	3	0.09			
tails	red	1	0.02			
tails	red	2	0.06			
tails	red	3	0.12			
heads	black	1	0.075			
heads	black	2	0.03			
heads	black	3	0.045			
heads	red	1	0.035			
heads	red	2	0.105			
bonde	rod	2	0.21			

26