CS 331: Artificial Intelligence Propositional Logic I

Knowledge-based Agents

- Can represent knowledge
- And reason with this knowledge
- How is this different from the knowledge used by problem-specific agents?
 - More general
 - More flexible

Outline

- 1. Knowledge-based Agents
- 2. The Wumpus World
- 3. Logic

Knowledge-based Agents

3

- Knowledge of problem solving agents is specific and inflexible
- Knowledge-based agents can benefit from knowledge expressed in very general forms, combining information in different ways to suit different purposes
- Knowledge-based agents can combine general knowledge with current percepts to infer hidden aspects of the current state

- Knowledge of logical agents is always definite
- That is, each proposition is entirely true or entirely false
- Agent may be agnostic about some propositions
- Logic doesn't handle uncertainty well

The Wumpus World

- Performance measure:
 - +1000 for picking up gold, -1000 for death (meeting a live wumpus or falling into a pit)
 - -1 for each action taken, -10 for using arrow

• Environment:

- 4x4 grid of rooms
- Agent starts in (1,1) and faces right
- Geography determined at the start:
 - Gold and wumpus locations chosen randomly
 - Each square other than start can be a pit with probability 0.2

The Wumpus World

• Sensors:

- Returns a 5-tuple of five symbols eg. [stench, breeze, glitter, bump, scream] (note that in this 5-tuple, all five things are present. We indicate absence with the value None)
- In squares adjacent to the wumpus, agent perceives a stench
- In squares adjacent to a pit, agent perceives a breeze
- In squares containing gold, agent perceives a glitter
- When agent walks into a wall, it perceives a bump
- When wumpus is killed, it emits a woeful scream that is perceived anywhere

The Wumpus World Environment Properties

- Fully or Partially observable?
- Deterministic or stochastic?
- Episodic or sequential?
- Static or dynamic?
- Discrete or continuous?
- Single agent or multiagent?

Propositional Logic: Syntax and Semantics

Syntax: Backus-Naur Form grammar of sentences in propositional logic

Sentence \rightarrow AtomicSentence | ComplexSentence

 $AtomicSentence \rightarrow True \mid False \mid Symbol$

 $\mathsf{Symbol} \to \mathbf{P} \mid \mathbf{Q} \mid \mathbf{R} \mid \dots$

 $ComplexSentence \rightarrow \neg Sentence$

| (Sentence \land Sentence)

| (Sentence \lor Sentence)

| (Sentence \Rightarrow Sentence)

| (Sentence \Leftrightarrow Sentence)

40

Atomic Sentences

- The indivisible syntactic elements
- Consist of a single propositional symbol e.g. P, Q, R that stands for a proposition that can be true or false e.g. P=true, Q=false

- We also call an atomic sentence a literal
- 2 special propositional symbols:
 - True (the always true proposition)
 - False (the always false proposition)

Semantics

For atomic sentences:

- True is true, False is false
- A symbol has its value specified in the model

For complex sentences (for any sentence S and model m):

- $\neg S$ is true in m iff S is false in m
- $S_1 \wedge S_2$ is true in m iff S_1 is true in m and S_2 is true in m
- $S_1 \vee S_2$ is true in m iff S_1 is true in m or S_2 is true in m
- S₁ ⇒ S₂ is true in m iff S₁ is false in m or S₂ is true in m i.e., can translate it as ¬S₁ ∨ S₂
- $S_1 \Leftrightarrow S_2$ is true iff $S_1 \Rightarrow S_2$ is true in m and $S_2 \Rightarrow S_1$ is true in m

Truth Tables for the Connectives

Р	¬P
false	true
true	false

Р	Q	P∧Q	PvQ	$P \Rightarrow Q$	P⇔Q
false	false	false	false	true	true
false	true	false	true	true	false
true	false	false	true	false	false
true	true	true	true	true	true

47

With the truth tables, we can compute the truth value of any sentence with a recursive evaluation e.g.

Suppose the model is P=false, Q=false, R=true

 $\neg P \land (Q \lor R) = true \land (false \lor true) = true \land true = true$

]	[nfe	ere	nce	•				
 How do we decide if KB = α? Enumerate the models, check that α is true in every model in which KB is true 												
B _{1,1}	B _{2,1}	P _{1,1}	P _{1,2}	P _{2,1}	P _{2,2}	P _{3,1}	R ₁	R ₂	R ₃	R ₄	R ₅	KB
false	false	false	false	false	false	false	true	true	true	true	false	false
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	:
	tana	truo	truo	truo	truo	truo	folco	truo	truo	falsa	truo	falsa

Inference												
• Suppose we want to know if KB $\models \neg P_{1,2}$?												
• In the 3 models in which KB is true, $\neg P_{1,2}$ is also true												
B _{1,1}	B _{2,1}	P _{1,1}	P _{1,2}	P _{2,1}	P _{2,2}	P _{3,1}	R ₁	R ₂	R ₃	R ₄	R ₅	KB
false	false	false	false	false	false	false	true	true	true	true	false	false
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	:
true	true	true	true	true	true	true	false	true	true	false	true	false

Things you should know

- Properties of a knowledge-based agent
- What a knowledge-base is
- What entailment and inference mean
- Desirable properties of inference algorithms such as soundness and completeness