

Review of Last Time

- |= means "logically follows"
- $\left.\right|_{-\mathrm{i}}$ means "can be derived from"
- If your inference algorithm derives only things that follow logically from the KB, the inference is sound
- If everything that follows logically from the KB can be derived using your inference algorithm, the inference is complete

Inference: Model Checking

- Suppose we want to know if $\mathrm{KB} \mid=\neg \mathrm{P}_{1,2}$?
- In the 3 models in which KB is true, $\neg \mathrm{P}_{1,2}$ is also true

$\mathrm{B}_{1,1}$	$\mathrm{~B}_{2,1}$	$\mathrm{P}_{1,1}$	$\mathrm{P}_{1,2}$	$\mathrm{P}_{2,1}$	$\mathrm{P}_{2,2}$	$\mathrm{P}_{3,1}$	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true						
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true							
false	true	false	false	true	false	false	true	false	false	true	true	false
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$
true	false	true	true	false	true	false						

Complexity

- If the KB and α contain n symbols in total, what is the time complexity of the truth table enumeration algorithm?
- Space complexity is $\mathrm{O}(\mathrm{n})$ because the actual algorithm uses DFS

The really depressing news

- Every known inference algorithm for propositional logic has a worst-case complexity that is exponential in the size of the input

- But some algorithms are more efficient in practice

Logical equivalence

- Intuitively: two sentences α and β are logically equivalent (i.e. $\alpha \equiv \beta$) if they are true in the same set of models
- Formally: $\alpha \equiv \beta$ if and only if $\alpha \mid=\beta$ and $\beta \mid=\alpha$
- Can prove this with truth tables

Standard Logic Equivalences

$(\alpha \wedge \beta) \equiv(\beta \wedge \alpha) \quad$ commutativity of \wedge
$(\alpha \vee \beta) \equiv(\beta \vee \alpha) \quad$ commutativity of \vee
$((\alpha \wedge \beta) \wedge \gamma) \equiv(\alpha \wedge(\beta \wedge \gamma))$ associativity of \wedge
$((\alpha \vee \beta) \vee \gamma) \equiv(\alpha \vee(\beta \vee \gamma))$ associativity of \vee
$\neg(\neg \alpha) \equiv \alpha$ double-negation elimination
$(\alpha \Rightarrow \beta) \equiv(\neg \beta \Rightarrow \neg \alpha) \quad$ contraposition
$(\alpha \Rightarrow \beta) \equiv(\neg \alpha \vee \beta) \quad$ implication elimination
$(\alpha \Leftrightarrow \beta) \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha))$ biconditional elimination
$\neg(\alpha \wedge \beta) \equiv(\neg \alpha \vee \neg \beta) \quad$ de Morgan
$\neg(\alpha \vee \beta) \equiv(\neg \alpha \wedge \neg \beta)$ de Morgan
$(\alpha \wedge(\beta \vee \gamma)) \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma))$ distributivity of \wedge over \vee

$$
(\alpha \vee(\beta \wedge \gamma)) \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \text { distributivity of } \vee \text { over } \wedge
$$

In the above, α, β, and γ are arbitrary sentences of propositional logic

Satisfiability

- A sentence is satisfiable if it is true in some model.
- A sentence is unsatisfiable if it is true in no models
- Determining the satisfiability of sentences in propositional logic was the first problem proved to be NP-complete
- Satisfiability is connected to validity: α is valid iff $\neg \alpha$ is unsatisfiable
- Satisfiability is connected to entailment: $\alpha \mid=\beta$ iff the sentence $(\alpha \wedge \neg \beta)$ is unsatisfiable (proof by contradiction)

CW: Exercise

- Is the following sentence valid?

$$
(A \Rightarrow B) \vee(\neg A \Rightarrow \neg B)
$$

Proof methods

How do we prove that α can be entailed from the KB?

1. Model checking e.g. check that α is true in all models in which KB is true
2. Inference rules

Inference Rules

1. Modus Ponens
$\frac{\alpha \Rightarrow \beta, \quad \alpha}{\beta}$
2. And-Elimination
$\frac{\alpha \wedge \beta}{\alpha}$
These are both sound inference rules. You don't need to enumerate models now

Other Inference Rules

$(\alpha \wedge \beta) \equiv(\beta \wedge \alpha) \quad$ commutativity of \wedge
$(\alpha \vee \beta) \equiv(\beta \vee \alpha) \quad$ commutativity of \vee
$((\alpha \wedge \beta) \wedge \gamma) \equiv(\alpha \wedge(\beta \wedge \gamma))$ associativity of \wedge
$((\alpha \vee \beta) \vee \gamma) \equiv(\alpha \vee(\beta \vee \gamma))$ associativity of \vee
$\neg(\neg \alpha) \equiv \alpha \quad$ double-negation elimination
$(\alpha \Rightarrow \beta) \equiv(\neg \beta \Rightarrow \neg \alpha) \quad$ contraposition
$(\alpha \Rightarrow \beta) \equiv(\neg \alpha \vee \beta) \quad$ implication elimination
$(\alpha \Leftrightarrow \beta) \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \quad$ biconditional elimination
$\neg(\alpha \wedge \beta) \equiv(\neg \alpha \vee \neg \beta)$ de Morgan
$\neg(\alpha \vee \beta) \equiv(\neg \alpha \wedge \neg \beta)$ de Morgan
$(\alpha \wedge(\beta \vee \gamma)) \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma))$ distributivity of \wedge over \vee
$(\alpha \vee(\beta \wedge \gamma)) \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma))$ distributivity of \vee over \wedge
All of the logical equivalences can be turned into
inference rules e.g.

$$
\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)}
$$

Example

Given the following KB, can we prove $\neg \mathrm{R}$?
KB:
$P \Rightarrow \neg(Q \vee R)$
P

Proof:
$\neg(\mathrm{Q} \vee \mathrm{R})$ by Modus Ponens
$\neg \mathrm{Q} \wedge \neg \mathrm{R}$ by De Morgan's Law
$\neg \mathrm{R}$ by And-Elimination

Proofs

- A sequence of applications of inference rules is called a proof
- Instead of enumerating models, we can search for proofs
- Proofs ignore irrelevant propositions
- 2 methods:
- Go forward from initial KB, applying inference rules to get to the goal sentence
- Go backward from goal sentence to get to the KB

In-class Exercise	
If it is October, there will not be a football game at OSU If it is October and it is Saturday, I will be in Corvallis If it doesn’t rain or if there is a football game, I will ride my bike to OSU Today is Saturday and it is October If I am in Corvallis, it will not rain	

Monotonicity

- Proofs only work because of monotonicity
- Monotonicity: the set of entailed sentences can only increase as information is added to the knowledge base
- For any sentences α and β, if $\mathrm{KB} \mid=\alpha$ then $\mathrm{KB} \wedge \beta \mid=\alpha$

Resolution

- An inference rule that is sound and complete
- Forms the basis for a family of complete inference procedures
- Here, complete means refutation completeness: resolution can refute or confirm the truth of any sentence with respect to the KB

Conjunctive Normal Form

- Resolution only applies to sentences of the form 1_{1} $\vee l_{2} \vee \ldots \vee l_{k}$
- This is called a disjunction of literals
- It turns out that every sentence of propositional logic is logically equivalent to a conjunction of disjunction of literals
- Called Conjunctive Normal Form or CNF e.g. $\left(l_{1} \vee l_{2} \vee l_{3} \vee 1_{4}\right) \wedge\left(l_{5} \vee l_{6} \vee l_{7} \vee 1_{8}\right) \wedge \ldots$
- $\mathrm{k}-\mathrm{CNF}$ sentences have exactly k literals per clause e.g. A 3-CNF sentence would be $\left(l_{1} \vee l_{2} \vee l_{3}\right) \wedge\left(l_{4}\right.$ $\left.\vee 1_{5} \vee 1_{6}\right) \wedge\left(1_{7} \vee 1_{8} \vee 1_{9}\right)$

Resolution

- Here's how resolution works ($\neg l_{2}$ and l_{2} are called complementary literals):

$$
\frac{l_{1} \vee l_{2}, \quad \neg l_{2} \vee l_{3}}{l_{1} \vee l_{3}}
$$

- Note that you need to remove multiple copies of literals (called factoring) i.e.

$$
\frac{l_{1} \vee l_{2}, \quad \neg l_{2} \vee l_{1}}{l_{1}}
$$

- If l_{i} and m_{j} are complementary literals, the full resolution rule looks like:
$\frac{l_{1} \vee \cdots \vee l_{k}, \quad m_{1} \vee \cdots \vee m_{n}}{l_{1} \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots \vee l_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}}$

Recipe for Converting to CNF

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge$ ($\beta \Rightarrow \alpha$)
2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$
3. Move \neg inwards using:
$\neg(\neg \alpha) \equiv \alpha$ (double-negation elimination)
$\neg(\alpha \wedge \beta) \equiv \neg \alpha \vee \neg \beta$ (De Morgan's Law)
$\neg(\alpha \vee \beta) \equiv \neg \alpha \wedge \neg \beta$ (De Morgan's Law)
4. Apply distributive law $(\alpha \vee(\beta \wedge \gamma)) \equiv((\alpha \vee \beta) \wedge$ $(\alpha \vee \gamma))$

In-class Exercise

KB	Can we show that :
Person \Rightarrow Mortal Socrates \Rightarrow Person	KB $\mid=($ Socrates \Rightarrow Mortal)?

Exercise

- Convert the following sentence to CNF.

$$
(B \vee C) \Rightarrow D
$$

A resolution algorithm

To prove $K B \mid=\alpha$, we show that $(K B \wedge \neg \alpha)$ is unsatisfiable
(Remember that $\alpha \mid=\beta$ iff the sentence $(\alpha \wedge \neg \beta)$ is unsatisfiable)
The algorithm:

1. Convert $(\mathrm{KB} \wedge \neg \alpha)$ to CNF
2. Apply resolution rule to resulting clauses. Each pair with complementary literals is resolved to produce a new clause which is added to the KB
3. Keep going until

- There are no new clauses that can be added (meaning KB $\mid \neq \alpha$) - Two clauses resolve to yield the empty clause (meaning KB |= a) $\sqrt{\text { The empty clause is equivalent to false }}$ because a disjunction is true only if one of its disjuncts is true

In-class Exercise

KB
Person \Rightarrow Mortal
Socrates \Rightarrow Person

Can we show that :
KB $\mid=$ (Socrates \Rightarrow Mortal $)$?
Socrates \Rightarrow Person

Resolution Pseudocode
function PL-RESOLUTION $(K B, \alpha)$ returns true or false
clauses \leftarrow the set of clauses in the CNF representation of $K B \wedge \neg \alpha$
$n e w \leftarrow\}$
loop do
for each C_{i}, C_{j} in clauses do
resolvents $\leftarrow \operatorname{PL}-\operatorname{Resolve}\left(C_{i}, C_{j}\right)$
if resolvents contains the empty clause then return true new \leftarrow new \cup resolvents
if new \subseteq clauses then return false
clauses \leftarrow clauses \cup new
4. $\neg A \vee \neg P \vee E$

- Does $K B \mid=\neg R$?

Things you should know

- Understand the syntax and semantics of propositional logic
- Know how to do a proof in propositional logic using inference rules
- Know how to convert arbitrary sentences to CNF
- Know how resolution works

