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CS 331: Artificial Intelligence

Uninformed Search
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Real World Search Problems
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Simpler Search Problems
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Assumptions About Our 

Environment

• Fully Observable

• Deterministic

• Sequential

• Static

• Discrete

• Single-agent
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Search Problem Formulation

A search problem has 5 components:

1. A finite set of states S

2. A non-empty set of initial states I  S

3. A non-empty set of goal states G  S

4. A successor function succ(s) which takes a state 
s as input and returns as output the set of states 
you can reach from state s in one step.

5. A cost function cost(s,s’) which returns the non-
negative one-step cost of travelling from state s
to s’.  The cost function is only defined if s’ is a 
successor state of s.
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Example: Oregon

Corvallis

Eugene

Albany Lebanon

Salem

Newport

Coos

Bay

McMinnville

Portland

Junction

City

Medford

S = {Coos Bay, Newport,      

Corvallis, Junction City, 

Eugene, Medford, Albany, 

Lebanon, Salem, 

Portland, McMinnville}

I = {Corvallis}

G={Medford}

Succ(Corvallis)={Albany, 

Newport, McMinnville, 

Junction City}

Cost(s,s’) = 1 for all transitions
Goal State

Initial State



4

7

• Solution

Path from initial state to goal state

• Solution quality

Path cost (3 in this case)

• Optimal solution

Lowest path cost among all solutions (In this case, 
we found the optimal solution)

Results of a Search Problem

Junction

City
Corvallis Eugene Medford
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Search Tree

Corvallis Start with Initial State
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Search Tree

Corvallis Is initial state the goal?

• Yes, return solution

• No, apply Successor() 

function
NewportMcMinnville Albany

Junction

City
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Search Tree

Corvallis Apply Successor() 

function

NewportMcMinnville Albany
Junction

City

These nodes have not been 

expanded yet.  Call them the 

fringe.  We’ll put them in a 

queue.

McMinnville

Albany

Junction City

Newport

Queue
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Search Tree
Corvallis

NewportMcMinnville Albany
Junction

City

Albany

Junction City

Newport

Portland

Queue

Portland

Now remove a node from the queue.  If it’s a goal 

state, return the solution.  Otherwise, call 

Successor() on it, and put the results in the queue.  

Repeat.

Search Tree
Corvallis

NewportMcMinnville Albany
Junction

City

Albany

Junction City

Newport

Portland

Queue

Portland

Things to note:

• Order in which you expand nodes (in this 

example, we took the first node in the queue)

• Avoid repeated states
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Tree-Search Pseudocode

14

Tree-Search Pseudocode

Note: Goal test happens after we grab a node off the 

queue.
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Tree-Search Pseudocode

Why are these parent node backpointers are 

important?
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Uninformed Search

• No info about states other than generating 

successors and recognizing goal states

• Later on we’ll talk about informed search –

can tell if a non-goal state is more 

promising than another
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Evaluating Uninformed Search

• Completeness

Is the algorithm guaranteed to find a solution 
when there is one?

• Optimality

Does it find the optimal solution?

• Time complexity

How long does it take to find a solution?

• Space complexity

How much memory is needed to perform the 
search

18

Complexity

1. Branching factor (b) – maximum number of 
successors of any node

2. Depth (d) of the shallowest goal node

3. Maximum length (m) of any path in the search 
space

Time Complexity: number of nodes generated during 
search

Space Complexity: maximum number of nodes 
stored in memory
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Uninformed Search Algorithms

• Breadth-first search

• Uniform-cost search

• Depth-first search

• Depth-limited search

• Iterative Deepening Depth-first Search

• Bidirectional search

20

Breadth-First Search

• Expand all nodes at a given depth before 

any nodes at the next level are expanded

• Implement with a FIFO queue



11

21

Breadth First Search Example

A

B

ED

C

F G

A

B

ED

C

F G

Not yet reached Closed (expanded) nodes 

Open nodes (on the fringe) Current node to be expanded
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Breadth First Search Example

A

B

ED

C

F G

A

B

ED

C

F G

Not yet reached Closed (expanded) nodes 

Open nodes (on the fringe) Current node to be expanded
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Evaluating BFS

Complete?

Optimal?

Time Complexity

Space Complexity
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Evaluating BFS

Complete? Yes provided branching factor is 

finite

Optimal?

Time Complexity

Space Complexity
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Evaluating BFS

Complete? Yes provided branching factor is 

finite

Optimal? Yes if step costs are identical

Time Complexity

Space Complexity
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Evaluating BFS

Complete? Yes provided branching factor is 

finite

Optimal? Yes if step costs are identical

Time Complexity b+b2+b3+…+bd+(bd+1-b)=

O(bd+1)

Space Complexity
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Evaluating BFS

Complete? Yes provided branching factor is 

finite

Optimal? Yes if step costs are identical

Time Complexity b+b2+b3+…+bd+(bd+1-b)=

O(bd+1)

Space Complexity O(bd+1)

Exponential time and space complexity make 

BFS impractical for all but the smallest problems
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Uniform-cost Search

• What if step costs are not equal?

• Recall that BFS expands the shallowest node

• Now we expand the node with the lowest path cost

• Uses priority queues

Note: Gets stuck if there is a zero-cost action leading back to the 

same state.

For completeness and optimality, we require the cost of every step to 

be ≥ 
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Evaluating Uniform-cost Search

Complete?

Optimal?

Time Complexity

Space Complexity

30

Evaluating Uniform-cost Search

Complete? Yes provided branching factor is 

finite and step costs ≥  for small 

positive 

Optimal?

Time Complexity

Space Complexity
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Evaluating Uniform-cost Search

Complete? Yes provided branching factor is 

finite and step costs ≥  for small 

positive 

Optimal? Yes

Time Complexity

Space Complexity

32

Evaluating Uniform-cost Search

Complete? Yes provided branching factor is 

finite and step costs ≥  for small 

positive 

Optimal? Yes

Time Complexity O(b1+floor(C*/)) where C* is the 

cost of the optimal solution

Space Complexity
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Evaluating Uniform-cost Search

Complete? Yes provided branching factor is 

finite and step costs ≥  for small 

positive 

Optimal? Yes

Time Complexity O(b1+floor(C*/)) where C* is the 

cost of the optimal solution

Space Complexity O(b1+floor(C*/)) where C* is the 

cost of the optimal solution

34

Depth-first Search

• Expands the deepest node in the current 

fringe of the search tree

• Implemented with a LIFO queue
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Depth-first Search Example

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

Not yet reached Expanded nodes on current path

Expanded nodes with no 

descendants in the fringe (can be 

removed from memory)

On fringe but 

unexpanded

Current node to be 

expanded

M Goal state

Depth-first Search Example

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

Not yet reached Expanded nodes on current path

Expanded nodes with no 

descendants in the fringe (can be 

removed from memory)

On fringe but 

unexpanded

Current node to be 

expanded

M Goal state
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Evaluating Depth-first Search

Complete?

Optimal?

Time Complexity

Space Complexity
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Evaluating Depth-first Search

Complete? Yes on finite graphs. No if there is 

an infinitely long path with no 

solutions.

Optimal?

Time Complexity

Space Complexity
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Evaluating Depth-first Search

Complete? Yes on finite graphs. No if there is 

an infinitely long path with no 

solutions.

Optimal? No (Could expand a much longer 

path than the optimal one first) 

Time Complexity

Space Complexity
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Evaluating Depth-first Search

Complete? Yes on finite graphs. No if there is 

an infinitely long path with no 

solutions.

Optimal? No (Could expand a much longer 

path than the optimal one first) 

Time Complexity O(bm)

Space Complexity
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Evaluating Depth-first Search

Complete? Yes on finite graphs. No if there is 

an infinitely long path with no 

solutions.

Optimal? No (Could expand a much longer 

path than the optimal one first) 

Time Complexity O(bm)

Space Complexity O(bm)
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Depth-limited Search

• Solves infinite path problem by using 

predetermined depth limit l

• Nodes at depth l are treated as if they have 

no successors

• Can use knowledge of the problem to 

determine l (but in general you don’t know 

this in advance)
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Evaluating Depth-limited Search

Complete?

Optimal?

Time Complexity

Space Complexity
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Evaluating Depth-limited Search

Complete? No (If shallowest goal node 

beyond depth limit) 

Optimal?

Time Complexity

Space Complexity
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Evaluating Depth-limited Search

Complete? No (If shallowest goal node 

beyond depth limit) 

Optimal? No (If depth limit > depth of 

shallowest goal node and we  

expand a much longer path than 

the optimal one first) 

Time Complexity

Space Complexity

46

Evaluating Depth-limited Search

Complete? No (If shallowest goal node 

beyond depth limit) 

Optimal? No (If depth limit > depth of 

shallowest goal node and we  

expand a much longer path than 

the optimal one first) 

Time Complexity O(bl)

Space Complexity
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Evaluating Depth-limited Search

Complete? No (If shallowest goal node 

beyond depth limit) 

Optimal? No (If depth limit > depth of 

shallowest goal node and we  

expand a much longer path than 

the optimal one first) 

Time Complexity O(bl)

Space Complexity O(bl)
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Iterative Deepening Depth-first 

Search

• Do DFS with depth limit 0, 1, 2, … until a 

goal is found

• Combines benefits of both DFS and BFS
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Iterative Deepening Depth-first 

Search Example

A ALimit = 0

B C

A

B C

ALimit = 1

B C

A

B C

A

Limit = 2

D E F G

B C

A

D E F G

B C

A

D E F G

B C

A

D E F G

B C

A

D E F G

B C

A

D E F G

B C

A

D E F G

B C

A

D E F G

B C

A

50

IDDFS Example

Limit = 3

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A
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IDDFS Example

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

H I J K L M N O

D E F G

B C

A

Limit = 3 (Continued)
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Evaluating Iterative Deepening 

Depth-first Search

Complete?

Optimal?

Time Complexity

Space Complexity
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Evaluating Iterative Deepening 

Depth-first Search

Complete? Yes provided branching factor is 

finite

Optimal?

Time Complexity

Space Complexity
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Evaluating Iterative Deepening 

Depth-first Search

Complete? Yes provided branching factor is 

finite

Optimal? Yes if the path cost is a 

nondecreasing function of the 

depth of the node

Time Complexity

Space Complexity
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Evaluating Iterative Deepening 

Depth-first Search

Complete? Yes provided branching factor is 

finite

Optimal? Yes if the path cost is a 

nondecreasing function of the 

depth of the node

Time Complexity O(bd)

Space Complexity
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Evaluating Iterative Deepening 

Depth-first Search

Complete? Yes provided branching factor is 

finite

Optimal? Yes if the path cost is a 

nondecreasing function of the 

depth of the node

Time Complexity O(bd)

Space Complexity O(bd)



29

57

Isn’t Iterative Deepening Wasteful?

• Actually, no!  Most of the nodes are at the bottom 
level, doesn’t matter that upper levels are generated 
multiple times.

• To see this, add up the 4th column below:

Depth # of 

nodes

# of times 

generated

Total # of nodes generated at 

depth d

1 b d (d)b

2 b2 d-1 (d-1)b2

: : : :

d bd 1 (1)bd

58

Is Iterative Deepening Wasteful?

Total # of nodes generated by iterative 

deepening: 

(d)b + (d-1)b2 +… + (1)bd = O(bd+1)

Total # of nodes generated by BFS: 

b + b2 +… + bd + bd+1 - b = O(bd+1)

In general, iterative deepening is the preferred 

uninformed search method when there is a large 

search space and the depth of the solution is not 

known
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Bidirectional Search

• Run one search forward from the initial state

• Run another search backward from the goal

• Stop when the two searches meet in the middle

60

Bidirectional Search

• Needs an efficiently computable   
Predecessor() function

• What if there are several goal states?

– Create a new dummy goal state whose 
predecessors are the actual goal states

• Difficult when the goal is an abstract 
description like “no queen attacks another 
queen”
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Evaluating Bidirectional Search

Complete?

Optimal?

Time Complexity

Space Complexity
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Evaluating Bidirectional Search

Complete? Yes provided branching factor is 

finite and both directions use BFS

Optimal?

Time Complexity

Space Complexity
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Evaluating Bidirectional Search

Complete? Yes provided branching factor is 

finite and both directions use BFS

Optimal? Yes if the step costs are all 

identical and both directions use 

BFS

Time Complexity

Space Complexity
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Evaluating Bidirectional Search

Complete? Yes provided branching factor is 

finite and both directions use BFS

Optimal? Yes if the step costs are all 

identical and both directions use 

BFS

Time Complexity O(bd/2)

Space Complexity
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Evaluating Bidirectional Search

Complete? Yes provided branching factor is 

finite and both directions use BFS

Optimal? Yes if the step costs are all 

identical and both directions use 

BFS

Time Complexity O(bd/2)

Space Complexity O(bd/2) (At least one search tree 

must be kept in memory for the 

membership check)
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Avoiding Repeated States

• Tradeoff between space and time!

• Need a closed list which stores every expanded 
node (memory requirements could make search 
infeasible)

• If the current node matches a node on the closed 
list, discard it (ie. discard the newly discovered 
path)

• We’ll refer to this algorithm as GRAPH-SEARCH

• Is this optimal?  Only for uniform-cost search or 
breadth-first search with constant step costs.  
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GRAPH-SEARCH
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Things You Should Know

• How to formalize a search problem

• How BFS, UCS, DFS, DLS, IDS and 

Bidirectional search work

• Whether the above searches are complete 

and optimal plus their time and space 

complexity

• The pros and cons of the above searches


