CS 331: Artificial Intelligence Uninformed Search

Real World Search Problems

Simpler Search Problems

Assumptions About Our Environment

- Fully Observable
- Deterministic
- Sequential
- Static
- Discrete
- Single-agent

Search Problem Formulation

A search problem has 5 components:

1. A finite set of states S
2. A non-empty set of initial states $I \subseteq S$
3. A non-empty set of goal states $G \subseteq S$
4. A successor function $\boldsymbol{\operatorname { s u c c c }}(\boldsymbol{s})$ which takes a state \boldsymbol{s} as input and returns as output the set of states you can reach from state s in one step.
5. A cost function $\boldsymbol{\operatorname { c o s t }}\left(\mathbf{s}, \boldsymbol{s}^{\prime}\right)$ which returns the nonnegative one-step cost of travelling from state s to \boldsymbol{s} '. The cost function is only defined if \boldsymbol{s} ' is a successor state of s.

Results of a Search Problem

- Solution

Path from initial state to goal state

- Solution quality

Path cost (3 in this case)

- Optimal solution

Lowest path cost among all solutions (In this case, we found the optimal solution)

Search Tree

Search Tree

Is initial state the goal?

- Yes, return solution
- No, apply Successor() function

Search Tree

These nodes have not been expanded yet. Call them the fringe. We'll put them in a queue.

Apply Successor() function

Queue

McMinnville
Albany
Junction City
Newport

Search Tree

Queue

Albany
Junction City
Newport
Portland

Now remove a node from the queue. If it's a goal state, return the solution. Otherwise, call Successor() on it, and put the results in the queue. Repeat.

Tree-Search Pseudocode

function Tree-Search (problem, fringe) returns a solution, or failure fringe $\leftarrow \operatorname{Insert}($ Make-Node(Initial-State[problem]), fringe) loop do
if fringe is empty then return failure
node \leftarrow Remove-Front(fringe)
if Goal-Test[problem](State%5Bnode%5D) then return Solution(node)
fringe $\leftarrow \operatorname{Insert}$ All (Expand (node, problem), fringe)
function Expand (node, problem) returns a set of nodes successors \leftarrow the empty set
for each action, result in Successor-Fn[problem](State%5Bnode%5D) do $s \leftarrow$ a new Node
Parent-Node $[s] \leftarrow$ node; Action $[s] \leftarrow$ action; State $[s] \leftarrow$ result
Path-Cost $[s] \leftarrow$ Path-Cost[node] + Step-Cost(node, action, s)
$\operatorname{Depth}[s] \leftarrow$ Depth $[$ node $]+1$
add s to successors
return successors

Tree-Search Pseudocode

function Tree-Search (problem, fringe) returns a solution, or failure fringe $\leftarrow \operatorname{Insert}($ Make-Node(Initial-State[problem]), fringe) loop do
if fringe is empty then return failure
node \leftarrow Remove-Front(fringe)
if Goal-Test[problem](State%5Bnode%5D) then return Solution(node)
fringe $\leftarrow \operatorname{Insert}$ AlL(Expand $($ node, problem), fringe)
function EXPAND(node, problem) returns a set of nodes
successors \leftarrow the emptv set
Note: Goal test happens after we grab a node off the queue.

Path-Cost $[s] \leftarrow$ Path-Cost[node] + Step-Cost(node, action, s)
Depth $[s] \leftarrow$ Depth $[$ node $]+1$
add s to successors
return successors

Tree-Search Pseudocode

function Tree-SEARCH (problem, fringe) returns a solution, or failure fringe $\leftarrow \operatorname{Insert}($ Make-Node(Initial-State[problem]), fringe) loop do
if fiminan ic omaty than roturn failuro
Why are these parent node backpointers are important?
function Expand(node, problem) returns a set of nodes successors \leftarrow the empty set
for each action, result in Successor-Fn[problem](State%5Bnode%5D) do $s \leftarrow$ a new Node
Parent-Node $[s] \leftarrow$ node; Action $[s] \leftarrow$ action; State $[s] \leftarrow$ result Path-Cost $[s] \leftarrow$ Path-Cost $[$ node $]+\operatorname{Step}-\operatorname{Cost}($ node, action, $s)$ $\operatorname{DEPTH}[s] \leftarrow$ Depth $[$ node $]+1$ add s to successors
return successors

Uninformed Search

- No info about states other than generating successors and recognizing goal states
- Later on we'll talk about informed search can tell if a non-goal state is more promising than another

Evaluating Uninformed Search

- Completeness

Is the algorithm guaranteed to find a solution when there is one?

- Optimality Does it find the optimal solution?
- Time complexity How long does it take to find a solution?
- Space complexity

How much memory is needed to perform the search

Complexity

1. Branching factor (b) - maximum number of successors of any node
2. Depth (d) of the shallowest goal node
3. Maximum length (m) of any path in the search space

Time Complexity: number of nodes generated during search
Space Complexity: maximum number of nodes stored in memory

Uninformed Search Algorithms

- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative Deepening Depth-first Search
- Bidirectional search

Breadth-First Search

- Expand all nodes at a given depth before any nodes at the next level are expanded
- Implement with a FIFO queue

Breadth First Search Example

Not yet reached
Closed (expanded) nodesOpen nodes (on the fringe)
Current node to be expanded

Breadth First Search Example

Evaluating BFS

Complete?	
Optimal?	
Time Complexity	
Space Complexity	

Evaluating BFS

Complete?	Yes provided branching factor is finite
Optimal?	
Time Complexity	
Space Complexity	

Evaluating BFS

Complete?	Yes provided branching factor is finite
Optimal?	Yes if step costs are identical
Time Complexity	
Space Complexity	

Evaluating BFS

Complete?	Yes provided branching factor is finite
Optimal?	Yes if step costs are identical
Time Complexity	$\mathrm{b}+\mathrm{b}^{2}+\mathrm{b}^{3}+\ldots+\mathrm{b}^{\mathrm{d}}+\left(\mathrm{b}^{\mathrm{d}+1}-\mathrm{b}\right)=$ $\mathrm{O}\left(\mathrm{b}^{\mathrm{d}+1}\right)$
Space Complexity	

Evaluating BFS

Complete?	Yes provided branching factor is finite
Optimal?	Yes if step costs are identical
Time Complexity	$\mathrm{b}+\mathrm{b}^{2}+\mathrm{b}^{3}+\ldots+\mathrm{b}^{\mathrm{d}}+\left(\mathrm{b}^{\mathrm{d}+1}-\mathrm{b}\right)=$ $\mathrm{O}\left(\mathrm{b}^{\mathrm{d}+1}\right)$
Space Complexity	$\mathrm{O}\left(\mathrm{b}^{\mathrm{d}+1}\right)$

Exponential time and space complexity make BFS impractical for all but the smallest problems

Uniform-cost Search

- What if step costs are not equal?
- Recall that BFS expands the shallowest node
- Now we expand the node with the lowest path cost
- Uses priority queues

Note: Gets stuck if there is a zero-cost action leading back to the same state.

For completeness and optimality, we require the cost of every step to be $\geq \varepsilon$

Evaluating Uniform-cost Search

Complete?	
Optimal?	
Time Complexity	
Space Complexity	

Evaluating Uniform-cost Search

Complete?	Yes provided branching factor is finite and step costs $\geq \varepsilon$ for small positive ε
Optimal?	
Time Complexity	
Space Complexity	

Evaluating Uniform-cost Search

Complete?	Yes provided branching factor is finite and step costs $\geq \varepsilon$ for small positive ε
Optimal?	Yes
Time Complexity	
Space Complexity	

Evaluating Uniform-cost Search	
Complete?	Yes provided branching factor is finite and step costs $\geq \varepsilon$ for small positive ε
Optimal?	Yes
Time Complexity	$\mathrm{O}\left(\mathrm{b}^{1+f l o o r\left(\mathrm{C}^{*} / \varepsilon\right)}\right)$ where C^{*} is the cost of the optimal solution
Space Complexity	

Evaluating Uniform-cost Search

Complete?	Yes provided branching factor is finite and step costs $\geq \varepsilon$ for small positive ε
Optimal?	Yes
Time Complexity	$\mathrm{O}\left(\mathbf{b}^{1+f l o o r\left(\mathrm{C}^{*} / \varepsilon\right)}\right)$ where C^{*} is the cost of the optimal solution
Space Complexity	$\mathrm{O}\left(\mathrm{b}^{1+f l o o r\left(\mathrm{C}^{*} \varepsilon\right)}\right)$ where C^{*} is the cost of the optimal solution

Depth-first Search

- Expands the deepest node in the current fringe of the search tree
- Implemented with a LIFO queue

Depth-first Search Example

Not yet reached	Expanded nodes on current path	Current node to be expanded
On fringe but unexpanded	Expanded nodes with no descendants in the fringe (can be removed from memory)	(M) Goal state

Depth-first Search Example

| Not yet reached | Expanded nodes on current path | Current node to be
 expanded |
| :--- | :--- | :--- | :--- |
| On fringe but
 unexpanded | Expanded nodes with no
 descendants in the fringe (can be
 removed from memory) | \mathbb{M} Goal state |

Evaluating Depth-first Search

Complete?	
Optimal?	
Time Complexity	
Space Complexity	

Evaluating Depth-first Search

Complete?	Yes on finite graphs. No if there is an infinitely long path with no solutions.
Optimal?	
Time Complexity	
Space Complexity	

Evaluating Depth-first Search

Complete?	Yes on finite graphs. No if there is an infinitely long path with no solutions.
Optimal?	No (Could expand a much longer path than the optimal one first)
Time Complexity	
Space Complexity	

Evaluating Depth-first Search	
Complete? Yes on finite graphs. No if there is an infinitely long path with no solutions. Optimal? No (Could expand a much longer path than the optimal one first) Time Complexity $\mathrm{O}\left(\mathrm{b}^{\mathrm{m}}\right)$	
Space Complexity	

Evaluating Depth-first Search

Complete?	Yes on finite graphs. No if there is an infinitely long path with no solutions.
Optimal?	No (Could expand a much longer path than the optimal one first)
Time Complexity	$\mathrm{O}\left(\mathrm{b}^{\mathrm{m}}\right)$
Space Complexity	$\mathrm{O}(\mathrm{bm})$

Depth-limited Search

- Solves infinite path problem by using predetermined depth limit l
- Nodes at depth l are treated as if they have no successors
- Can use knowledge of the problem to determine l (but in general you don't know this in advance)

Evaluating Depth-limited Search

Complete?	
Optimal?	
Time Complexity	
Space Complexity	

Evaluating Depth-limited Search

Complete?	No (If shallowest goal node beyond depth limit)
Optimal?	
Time Complexity	
Space Complexity	

Evaluating Depth-limited Search

Complete?	No (If shallowest goal node beyond depth limit)
Optimal?	No (If depth limit > depth of shallowest goal node and we expand a much longer path than the optimal one first)
Time Complexity	
Space Complexity	

Evaluating Depth-limited Search

Complete?	No (If shallowest goal node beyond depth limit)
Optimal?	No (If depth limit > depth of shallowest goal node and we expand a much longer path than the optimal one first)
Time Complexity	O(b$\left.b^{\prime}\right)$
Space Complexity	

Evaluating Depth-limited Search

Complete?	No (If shallowest goal node beyond depth limit)
Optimal?	No (If depth limit > depth of shallowest goal node and we expand a much longer path than the optimal one first)
Time Complexity	O(b$\left.{ }^{\prime}\right)$
Space Complexity	$\mathrm{O}(\mathrm{b} l)$

Iterative Deepening Depth-first Search

- Do DFS with depth limit $0,1,2, \ldots$ until a goal is found
- Combines benefits of both DFS and BFS

Iterative Deepening Depth-first Search Example

Limit $=0$ \qquad 0

Limit $=1$

Limit $=2$为

IDDFS Example

Limit $=3$ (Continued)

Evaluating Iterative Deepening Depth-first Search

Complete?	
Optimal?	
Time Complexity	
Space Complexity	

Evaluating Iterative Deepening Depth-first Search

Complete?	Yes provided branching factor is finite
Optimal?	
Time Complexity	
Space Complexity	

Evaluating Iterative Deepening Depth-first Search

Complete?	Yes provided branching factor is finite
Optimal?	Yes if the path cost is a nondecreasing function of the depth of the node
Time Complexity	
Space Complexity	

Evaluating Iterative Deepening Depth-first Search	
Complete? Yes provided branching factor is finite Optimal? Yes if the path cost is a nondecreasing function of the depth of the node Time Complexity O(bd $\left.{ }^{d}\right)$ Space Complexity	

Evaluating Iterative Deepening Depth-first Search

Complete?	Yes provided branching factor is finite
Optimal?	Yes if the path cost is a nondecreasing function of the depth of the node
Time Complexity	$\mathrm{O}\left(\mathrm{b}^{\mathrm{d}}\right)$
Space Complexity	$\mathrm{O}(\mathrm{bd})$

Isn't Iterative Deepening Wasteful?

- Actually, no! Most of the nodes are at the bottom level, doesn't matter that upper levels are generated multiple times.
- To see this, add up the 4th column below:

Depth	\# of nodes	\# of times generated	Total \# of nodes generated at depth d
1	b	d	(d)b
2	$\mathrm{~b}^{2}$	$\mathrm{~d}-1$	$(\mathrm{~d}-1) \mathrm{b}^{2}$
$:$	$:$	$:$	$:$
d	b^{d}	1	$(1) \mathrm{b}^{\mathrm{d}}$

Is Iterative Deepening Wasteful?

Total \# of nodes generated by iterative deepening:

$$
(d) b+(d-1) b^{2}+\ldots+(1) b^{d}=O\left(b^{d+1}\right)
$$

Total \# of nodes generated by BFS:

$$
b+b^{2}+\ldots+b^{d}+b^{d+1}-b=O\left(b^{d+1}\right)
$$

In general, iterative deepening is the preferred uninformed search method when there is a large search space and the depth of the solution is not known

Bidirectional Search

- Run one search forward from the initial state
- Run another search backward from the goal
- Stop when the two searches meet in the middle

Bidirectional Search

- Needs an efficiently computable Predecessor() function
- What if there are several goal states?
- Create a new dummy goal state whose predecessors are the actual goal states
- Difficult when the goal is an abstract description like "no queen attacks another queen"

Evaluating Bidirectional Search

Complete?	
Optimal?	
Time Complexity	
Space Complexity	

Evaluating Bidirectional Search

Complete?	Yes provided branching factor is finite and both directions use BFS
Optimal?	
Time Complexity	
Space Complexity	

Evaluating Bidirectional Search

Complete?	Yes provided branching factor is finite and both directions use BFS
Optimal?	Yes if the step costs are all identical and both directions use BFS
Time Complexity	
Space Complexity	

Evaluating Bidirectional Search

Complete?	Yes provided branching factor is finite and both directions use BFS
Optimal?	Yes if the step costs are all identical and both directions use BFS
Time Complexity	$\mathrm{O}\left(\mathrm{b}^{\mathrm{d} / 2}\right)$
Space Complexity	

Evaluating Bidirectional Search

Complete?	Yes provided branching factor is finite and both directions use BFS
Optimal?	Yes if the step costs are all identical and both directions use BFS
Time Complexity	$\mathrm{O}\left(\mathrm{b}^{\mathrm{d} / 2}\right)$
Space Complexity	$\mathrm{O}\left(\mathrm{b}^{\mathrm{d} / 2}\right)$ (At least one search tree must be kept in memory for the membership check)

Avoiding Repeated States

- Tradeoff between space and time!
- Need a closed list which stores every expanded node (memory requirements could make search infeasible)
- If the current node matches a node on the closed list, discard it (ie. discard the newly discovered path)
- We'll refer to this algorithm as GRAPH-SEARCH
- Is this optimal? Only for uniform-cost search or breadth-first search with constant step costs.

GRAPH-SEARCH

function GRAPH-SEARCH (problem, fringe) returns a solution, or failure
closed \leftarrow an empty set
fringe $\leftarrow \operatorname{Insert}($ Make-Node $($ Initial-State $[$ problem $]$), fringe)
loop do
if fringe is empty then return failure
node \leftarrow Remove-Front (fringe)
if Goal-Test [problem](State%5Bnode%5D) then return Solution(node) if State[node] is not in closed then
add State[node] to closed
fringe $\leftarrow \operatorname{InSERT}$ AlL(EXPAND (node, problem), fringe)

Things You Should Know

- How to formalize a search problem
- How BFS, UCS, DFS, DLS, IDS and Bidirectional search work
- Whether the above searches are complete and optimal plus their time and space complexity
- The pros and cons of the above searches

