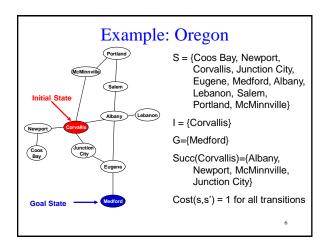
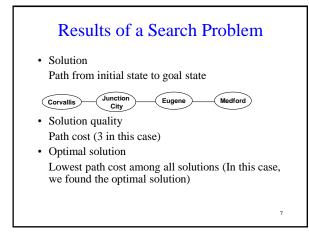
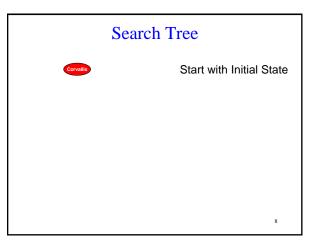
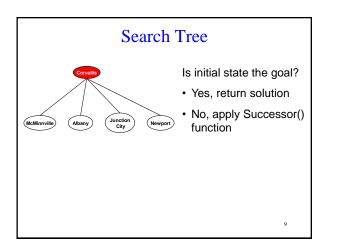
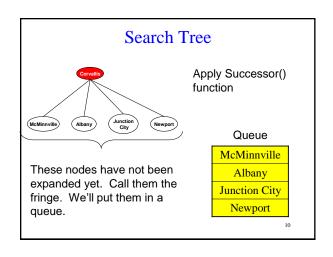

CS 331: Artificial Intelligence Uninformed Search

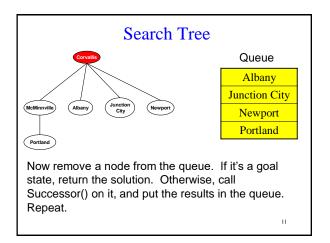

Assumptions About Our Environment

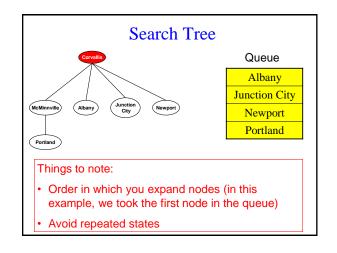

- Fully Observable
- Deterministic
- Sequential
- Static
- Discrete
- Single-agent

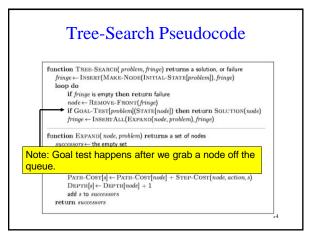

Search Problem Formulation

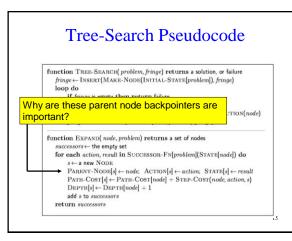

A search problem has 5 components:


- 1. A finite set of states S
- 2. A non-empty set of initial states $I \subseteq S$
- 3. A non-empty set of goal states $G \subseteq S$
- A successor function succ(s) which takes a state s as input and returns as output the set of states you can reach from state s in one step.
- 5. A cost function *cost(s,s')* which returns the nonnegative one-step cost of travelling from state *s* to *s'*. The cost function is only defined if *s'* is a successor state of *s*.






function TREE-SEARCH(problem, fringe) returns a solution, or failure fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe) loop do


if fringe is empty then return failure

 $fringe \leftarrow \text{INSERTALL}(\text{EXPAND}(node, problem), fringe)$

function EXPAND(node, problem) returns a set of nodes

- successors \leftarrow the empty set for each *action*, *result* in SUCCESSOR-FN[*problem*](STATE[*node*]) do $s \leftarrow$ a new NODE
 - $\begin{array}{l} \text{PAREAT-NODE}[s] \leftarrow node; \quad \text{ACTION}[s] \leftarrow action; \quad \text{STATE}[s] \leftarrow result\\ \text{PATH-COST}[s] \leftarrow \text{PATH-COST}[node] + \quad \text{STEP-COST}(node, action, s) \end{array}$ $DEPTH[s] \leftarrow DEPTH[node] + 1$ add s to successors
- return successors

Uninformed Search

- No info about states other than generating successors and recognizing goal states
- Later on we'll talk about informed search can tell if a non-goal state is more promising than another

Evaluating Uninformed Search

- Completeness Is the algorithm guaranteed to find a solution when there is one?
- · Optimality Does it find the optimal solution?
- · Time complexity How long does it take to find a solution? ٠ Space complexity
- How much memory is needed to perform the search

17

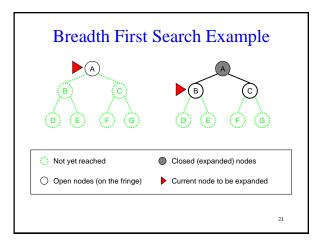
Complexity

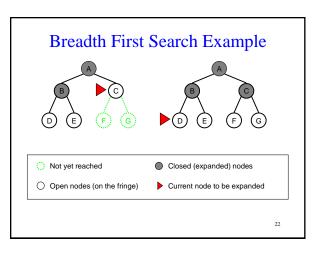
- Branching factor (b) maximum number of 1. successors of any node
- 2. Depth (d) of the shallowest goal node
- 3. Maximum length (m) of any path in the search space

Time Complexity: number of nodes generated during search

Space Complexity: maximum number of nodes stored in memory

Uninformed Search Algorithms

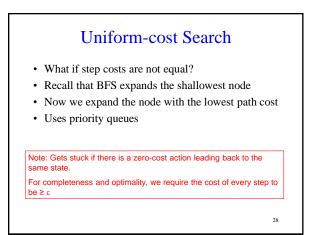

- Breadth-first search
- Uniform-cost search
- Depth-first search
- · Depth-limited search
- Iterative Deepening Depth-first Search


19

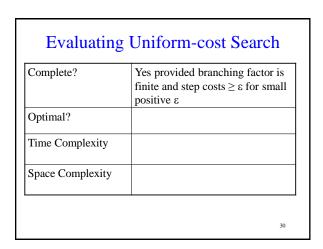
· Bidirectional search

Breadth-First Search

- Expand all nodes at a given depth before any nodes at the next level are expanded
- Implement with a FIFO queue


Complete?		
Optimal?		
Time Complexity	 	
Space Complexity	 	

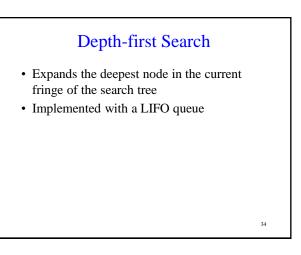
Complete?	Yes provided branching factor is finite
Optimal?	
Time Complexity	
Space Complexity	

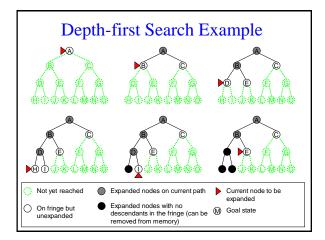

Eva	aluating BFS
Complete?	Yes provided branching factor is finite
Optimal?	Yes if step costs are identical
Time Complexity	
Space Complexity	

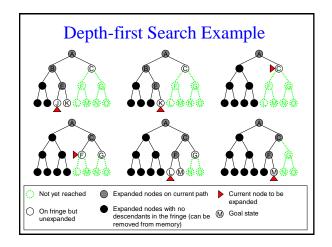
Complete?	Yes provided branching factor is finite
Optimal?	Yes if step costs are identical
Time Complexity	$b+b^2+b^3++b^d+(b^{d+1}-b)= O(b^{d+1})$
Space Complexity	

Complete?	Yes provided branching factor is finite
Optimal?	Yes if step costs are identical
Time Complexity	$b+b^2+b^3++b^d+(b^{d+1}-b)=$ O(b^{d+1})
Space Complexity	O(b ^{d+1})

Complete?	
Optimal?	
Time Complexity	
Space Complexity	


Complete?	Yes provided branching factor is finite and step $costs \ge \varepsilon$ for small positive ε
Optimal?	Yes
Time Complexity	
Space Complexity	
	31


Evaluating Uniform-cost Search

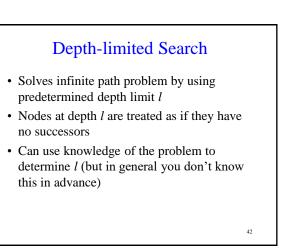

Complete?	Yes provided branching factor is finite and step $costs \ge \varepsilon$ for small positive ε
Optimal?	Yes
Time Complexity	$O(b^{1+floor(C^*/\epsilon)})$ where C* is the cost of the optimal solution
Space Complexity	
	32

Evaluating Uniform-cost Search

Complete?	Yes provided branching factor is finite and step $costs \ge \varepsilon$ for small positive ε
Optimal?	Yes
Time Complexity	$O(b^{1+floor(C^*/\epsilon)})$ where C* is the cost of the optimal solution
Space Complexity	$O(b^{1+floor(C^*/\epsilon)})$ where C* is the cost of the optimal solution
	33

Complete?		
Optimal?		
Time Complexity		
Space Complexity		

Complete?	Yes on finite graphs. No if there is an infinitely long path with no solutions.
Optimal?	
Time Complexity	
Space Complexity	
	1
	38


Evaluating Depth-first Search

Complete?	Yes on finite graphs. No if there is an infinitely long path with no solutions.
Optimal?	No (Could expand a much longer path than the optimal one first)
Time Complexity	
Space Complexity	
	39

Evaluating Depth-first Search

Complete?	Yes on finite graphs. No if there is an infinitely long path with no solutions.
Optimal?	No (Could expand a much longer path than the optimal one first)
Time Complexity	O(b ^m)
Space Complexity	
	40

Complete?	Yes on finite graphs. No if there is an infinitely long path with no solutions.
Optimal?	No (Could expand a much longer path than the optimal one first)
Time Complexity	O(b ^m)
Space Complexity	O(bm)

Evaluating Depth-limited Search	
Complete?	
Optimal?	
Time Complexity	
Space Complexity	
Space Complexity	
	43

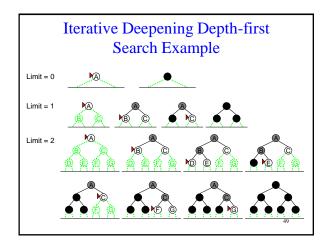
Γ

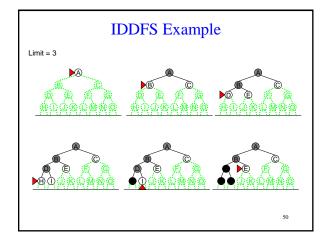
Evaluating Depth-limited Search

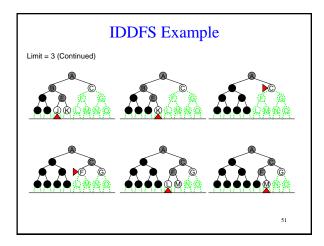
	beyond depth limit)
Optimal?	
Time Complexity	
Space Complexity	

Evaluating Depth-limited Search

Complete?	No (If shallowest goal node beyond depth limit)
Optimal?	No (If depth limit > depth of shallowest goal node and we expand a much longer path than the optimal one first)
Time Complexity	
Space Complexity	
	45


Evaluating Depth-limited Search


Complete?	No (If shallowest goal node beyond depth limit)
Optimal?	No (If depth limit > depth of shallowest goal node and we expand a much longer path than the optimal one first)
Time Complexity	O(b ^l)
Space Complexity	
	46


Complete?	No (If shallowest goal node beyond depth limit)
Optimal?	No (If depth limit > depth of shallowest goal node and we expand a much longer path than the optimal one first)
Time Complexity	O(b ^l)
Space Complexity	O(b <i>l</i>)

Iterative Deepening Depth-first Search

- Do DFS with depth limit 0, 1, 2, ... until a goal is found
- Combines benefits of both DFS and BFS

	Iterative Deepening th-first Search
Complete?	
Optimal?	
Time Complexity	
Space Complexity	
	52

Evaluating Iterative Deepening Depth-first Search	
Complete?	Yes provided branching factor is finite
Optimal?	
Time Complexity	
Space Complexity	
	53

Evaluating Iterative Deepening Depth-first Search		
Complete?	Yes provided branching factor is finite	
Optimal?	Yes if the path cost is a nondecreasing function of the depth of the node	
Time Complexity		
Space Complexity		
	54	

	g Iterative Deepening pth-first Search
Complete?	Yes provided branching factor is finite
Optimal?	Yes if the path cost is a nondecreasing function of the depth of the node
Time Complexity	O(b ^d)
Space Complexity	
	55

Evaluating Iterative Deepening Depth-first Search Complete? Yes provided branching factor is finite Optimal? Yes if the path cost is a nondecreasing function of the depth of the node Time Complexity O(b^d)

O(bd)

Isn't Iterative Deepening Wasteful?

- Actually, no! Most of the nodes are at the bottom level, doesn't matter that upper levels are generated multiple times.
- To see this, add up the 4th column below:

Depth	# of nodes	# of times generated	Total # of nodes generated at depth d
1	b	d	(d)b
2	b ²	d-1	(d-1)b ²
:	:	:	•
d	b ^d	1	(1)b ^d

Is Iterative Deepening Wasteful?

Total # of nodes generated by iterative deepening:

Space Complexity

 $(d)b + (d-1)b^2 + ... + (1)b^d = O(b^{d+1})$

Total # of nodes generated by BFS:

 $b + b^2 + ... + b^d + b^{d+1} - b = O(b^{d+1})$

In general, iterative deepening is the preferred uninformed search method when there is a large search space and the depth of the solution is not known

<section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Bidirectional Search

- Needs an efficiently computable Predecessor() function
- What if there are several goal states?
 Create a new dummy goal state whose predecessors are the actual goal states
- Difficult when the goal is an abstract description like "no queen attacks another queen"

56

Complete?	
Optimal?	
Time Complexity	
Space Complexity	
	61

Optimal? Time Complexity Space Complexity		finite and both directions use BFS
	Optimal?	
Space Complexity	Time Complexity	
	Space Complexity	

Evaluating Bidirectional Search

Complete?	Yes provided branching factor is finite and both directions use BFS
Optimal?	Yes if the step costs are all identical and both directions use BFS
Time Complexity	
Space Complexity	
	63

Evaluating Bidirectional Search

Complete?	Yes provided branching factor is finite and both directions use BFS
Optimal?	Yes if the step costs are all identical and both directions use BFS
Time Complexity	O(b ^{d/2})
Space Complexity	
	64

Evaluating	Bidirectional Search
Complete?	Yes provided branching factor is finite and both directions use BFS
Optimal?	Yes if the step costs are all identical and both directions use BFS
Time Complexity	O(b ^{d/2})
Space Complexity	O(b ^{d/2}) (At least one search tree must be kept in memory for the membership check)

Acoiding Repeated States Tradeoff between space and time! Need a closed list which stores every expanded node (memory requirements could make search infeasible) If the current node matches a node on the closed list, discard it (ie. discard the newly discovered path) We'll refer to this algorithm as GRAPH-SEARCH Is this optimal? Only for uniform-cost search or breadth-first search with constant step costs.

GRAPH-SEARCH

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure $closed \leftarrow an empty set$

fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe) loop do

if fringe is empty then return failure $node \leftarrow \text{REMOVE-FRONT}(fringe)$

if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node) if STATE[node] is not in closed then add STATE[node] to closed

 $fringe \leftarrow \text{INSERTALL}(\text{EXPAND}(node, problem), fringe)$

67

Things You Should Know

- How to formalize a search problem
- How BFS, UCS, DFS, DLS, IDS and Bidirectional search work
- Whether the above searches are complete and optimal plus their time and space complexity
- The pros and cons of the above searches