BoostClean: Automated
Error Detection and Repair
for Machine Learning

SANJAY KRISHNAN, MICHAEL J. FRANKLIN, KEN GOLDBERG,
EUGENE WU

Presented by Christopher Buss

R

Introduction > Contributions

What we’ll see in this paper:
1. Cleaning as Boosting
 Using statistical boosting (ensembles), automatically select the best cleaning operations
from a library in order to maximize the predictive performance of a downstream model
2. Automatic Model Improvements
 Evaluate BoostClean on 12 different datasets
 Improved prediction accuracy of up to 9% compared to non-ensembled approaches
3. Error Detection Library
* Built-in error detection library
* Includes Word2Vec featurization
 Achieves 81% accuracy of all errors found by hand-written rules
4. Optimizations
* Parallelism, materialization, and indexing
e 22.2x end-to-end speedup on a 16-core machine

Introduction > Problem Overview

Dirty data can bias predictions and degrade model accuracy.
* Recall Simpson’s Paradox (discussed in ActiveClean paper)

(a) Systematic Error

2 s
‘x x ‘- /
*3 ***** 5; 5
x *.".4’ 4’
Resull‘i':"'r Result".‘
True True
—- >

(b) Mixed Dirty and Clean

(c) Sampled Clean Data

Introduction > Problem Overview

Dirty data can bias predictions and degrade model accuracy.
* Recall Simpson’s Paradox (discussed in ActiveClean paper)

Garbage in, garbage out
* Must clean data in the correct way for a good model

Cleaning is a necessity! How is this normally done?

o1 2 4 5
..'x x .- /
3 *** 5; 5
x *."‘4’ "
Result" Result".‘
True True
—> >
(a) Systematic Error (b) Mixed Dirty and Clean (c) Sampled Clean Data

Introduction > The General Pipeline

Pipeline of scripts to downstream model
1. Take in n datasets

2. Use Booleans to detect a subset of dirty data LDat_a/Seil Batﬁetll

3. Apply repairs to fix those records

Detect
S
!
| Repair |
| !
Model

Introduction > The General Pipeline

Pipeline of scripts to downstream model
1. Take in n datasets

2. Use Booleans to detect a subset of dirty data B@L' t’ata/sem\l

3. Apply repairs to fix those records

More data, more problems | Detect ‘
* New data means new (unforeseen) problems {
* Must update detect and repair scripts regularly l
Q: How can human effort be reduced? | Repair |
| !
Model

Introduction > The General Pipeline

Pipeline of scripts to downstream model
1. Take in n datasets

2. Use Booleans to detect a subset of dirty data Bﬂa/seil tlat;seti}

3. Apply repairs to fix those records

More data, more problems | Detect ‘
* New data means new (unforeseen) problems {
* Must update detect and repair scripts regularly l

Q: How can human effort be reduced? | Repair ‘
A: Automate the detection and repair of a common class of data errors
called domain value violations (values outside the domain of the given l v

type)

Model

Introduction > BoostClean

BoostClean
Goal: Find the best ensemble of detect and repair operations in order to

repair domain value violations and maximize the predictive Dataset 1 | I\Datﬁef\l
R -

performance of model

Detect
N l S
| Repair |
| !
Model

Introduction > BoostClean

BoostClean
Goal: Find the best ensemble of detect and repair operations in order to

repair domain value violations and maximize the predictive Betiaset 2 - E)_E“a/wll
/ i i)

performance of model

Components: | Detect ‘
1. Error Detector (detect) {
 Generate predicates (rules) using Isolation forests on l
featurized values G
2. Repair Selector (repair) | Repair ‘
 Use boosting to generate a sequence of repair scripts
| !

Model

Background > Some Notes

What BoostClean does: What BoostClean does not do:
* Address systemic errors due to invariant * Repair the entire relation
VIO|atIOnS that Iead tO Unforeseen blaseS |n ° th|s COUld actua”y degrade performance!
the model e Address more difficult errors

e Think ActiveClean

* Leave things like deduplication up to engineers

Problem Statement > Setup

BoostClean takes...

1. A set of test and train data
¢ (Xtrain: Ytrain)» (Xtest: Ytest) (Yiest must be non-dirty!)

2. A user defined function that returns a classifier C
* train(Xtrain: Ytrain)

BoostClean will repair data and pass it to train()

No need to be concerned with detect/repair pipeline

Problem Statement > Setup > Lead Prediction Example

Leads: R(id, name, num_emp, industry, region, successful)

Goal: Predict whether a lead is successful

Provide:

Problem Statement > Setup > Lead Prediction Example

Leads: R(id, name, num_emp, industry, region, successful)

Goal: Predict whether a lead is successful

Provide:
1. Xtrain, test = {(name,num_emp, industry, region}

2. Yirain, test = {successful}

Problem Statement > Setup > Lead Prediction Example

Leads: R(id, name, num_emp, industry, region, successful)

Goal: Predict whether a lead is successful

Provide:
1. Xtrain, test = {(name,num_emp, industry, region}

2. Yirain, test = {successful}
3. train(.)
* Returns an SVM C that predicts y; (true, false) given row x;

Problem Statement > Setup > Lead Prediction Example

Leads: R(id, name, num_emp, industry, region, successful)

Goal: Predict whether a lead is successful

Provide:
1. Xtrain, test = {(name,num_emp, industry, region}
2. Yirain, test = {successful}
3. train(.)
* Returns an SVM C that predicts y; (true, false) given row x;

Evaluate C :
[{Vx,y € (Xtests YVeest) C((x; null)).y =y}

C) =
ace(C) Yoot

Problem Statement > Setup

BoostClean takes...

3. Alibrary of detectors* to generate predicates p;
e D= {dl, }

4. A library of repair functions* to apply to data
« F={f,..} *Optional. BoostClean has default D

and F, but user can extend library with
domain-specific functions

Problem Statement > Detection Generators and Predicates

Use d; € D to generate predicate

 d;(data) returns predicate p;
* Example: p;(r) = r.n_emp < 0 returns {n_emp} if true, otherwise @

Use f; € F to repair data

training trai e ediction
e Data repairs data conditional e F— predicti
* modify labels, delete records test data repair
data
* Prediction repairs - offline flow,
o . conditiona
» default prediction if data is orediction repair online flow
too corrupt >

Figure 2: Offline (orange) and online (blue) workflows.

Problem Statement > Detection Generators and Predicates

Putting it together with conditional repairs

1. Combine p; and f; into repair functions:

def generate_repailr (p, f):
def repair(r, r_orig):
if p(r): r = £ (r)
return r
return apply

NOTE: Repair functions take 7 AND 1,4, (we'll see why)

Problem Statement > Detection Generators and Predicates > Examples

Data repair:

def repair(r, r_origqg):
1f r.region in ('USWest’, ’"USWESTERN’):
r.region = "USW’
return r
Prediction repair:
def repair(r, r_oriqg):
1f r_orig.name == None:
r.y = False

return r
return C(r)

Problem Statement > Detection Generators and Predicates

Some notation...

L = (4, ...1,) is a sequence of generated repairss.t. L € D X F
« L% _datarepairs, LP - prediction repairs

Problem Statement > Detection Generators and Predicates

Some notation...

L = (4, ...1,) is a sequence of generated repairss.t. L € D X F
« L% _datarepairs, LP - prediction repairs

Run data through sequence of data repair functions:

(Xt’rain' Yt,rair}) - {L,d (T‘, T')|T' S (Xtrainr Ytrain)}
C = traln(Xtrain' Ytrain)
L(r,7) = L (I, (. ly(r, 1), 1), 1), 1)|1; € LY

Problem Statement > Detection Generators and Predicates

Some notation...

L = (4, ...1,) is a sequence of generated repairss.t. L € D X F
« L% _datarepairs, LP - prediction repairs

Run data through sequence of data repair functions:

(Xt’rain' Yt,rair}) - {L,d (T‘, T')|T' S (Xtrainr Ytrain)}
C = traln(Xtrain' Ytrain)
L(r,7) = L (I, (. ly(r, 1), 1), 1), 1)|1; € LY

Choose last prediction repair:
* .
" = argmax LELPA L (r)=true L

Problem Statement > Detection Generators and Predicates

Some notation...

L = (4, ...1,) is a sequence of generated repairss.t. L € D X F
« L% _datarepairs, LP - prediction repairs

Run data through sequence of data repair functions:

(Xt’rain' Yt,rair}) - {L,d (T‘, T')|T' S (Xtrainr Ytrain)}
C = traln(Xtrain' Ytrain)
L(r,7) = L (I, (. ly(r, 1), 1), 1), 1)|1; € LY

Choose last prediction repair:
* .
" = argmax LELPA L (r)=true L

Put it together:

_ C(L%(r, 7)) if " not found
Culr) = {l*(Ld (r,r),r) otherwise

Problem Statement > Problem Statement

We want the optimal sequence of detect/repair operations:

L" = argmax;cpxg acc(Cy)

Problem Statement > Problem Statement

We want the optimal sequence of detect/repair operations:
L* = argmax;cpxr acc(Cy)

Q: Can we cheat?

Problem Statement > Problem Statement

We want the optimal sequence of detect/repair operations:
L* = argmax;cpxr acc(Cy)

Q: Can we cheat?

A: Yes! Be greedy and make “repairs” that are highly correlated with C’s
accuracy!

Problem Statement > Problem Statement

We want the optimal sequence of detect/repair operations:
L* = argmax;cpxg acc(Cy)

Q: Can we cheat?

A: Yes! Be greedy and make “repairs” that are highly correlated with C’s
accuracy!

What if we take mispredictions from previous conditional repairs into
account?

 BoostClean does this by using a modified version of the Adaboost
algorithm

Repair Selection Algorithm > AdaBoost Overview

Key Concepts of AdaBoost:

1. Iteratively create “weak learners” to add to an ensemble of learners
* Weak learners: > 50% accuracy (weak learners are cheap!)

2. Concentrate on data misclassified by earlier learners
* Weight the data s.t. high weight = misclassified often by previous learners
* Misclassifying highly weighted data means a higher error in model

3. When testing, have learners “vote” on classes
* Learners are also weighted based on how well they predict

4. We want to maximize the weighted accuracy by minimizing the weighted error

Zx,y W(x,y) (C((x; null)). y=y)
2xy W y)

acc(C,W) =

Repair Selection Algorithm > Boost-and-Clean Algorithm

Algorithm 2: Boost-and-Clean Algorithm

Data: (X, Y
() 1 Initialize weights to be uniform

1 Initialize W,/ = ~

2 L generates a set of classifiers C{C'"), C™M) ..., C®)} where

C'9 is the base classifier and C (1), ., C (*) are derived from
the cleaning operations.

3 fort € [1,7] do

4 C': = Find C} € C that maximizes the weighted accuracy
on the test set. €; = Calculate weighted classification
error on the test set ax = ln(lz—:t)
W%.(Hl) X Wi(t)e_‘“y’*?ct(a’i): down-weight correct

| predictions, up-weight incorrectly predictions.

s return C(x) = sign(>) a,Cy(x))

Repair Selection Algorithm > Boost-and-Clean Algorithm

Algorithm 2: Boost-and-Clean Algorithm

Data: (X, Y
() 1 Initialize weights to be uniform

- (1) _
1 Initialize W,/ = &

2 L generates a set of classifiers C{C'"™”, C'", ..., C'")} where | consider all the different

') is the base classifier and C (1), .., C (*) are derived from| €numerations of
. . detecting/repairing we could do
the cleaning operations.
3 fort € [1,7] do
4 C': = Find C} € C that maximizes the weighted accuracy
on the test set. €; = Calculate weighted classification
error on the test set oy = ln(lz—:t)
W%.(Hl) X Wi(t)e_‘“y’*?ct(a’i): down-weight correct
| predictions, up-weight incorrectly predictions.

s return C(x) = sign(>) a,Cy(x))

Repair Selection Algorithm > Boost-and-Clean Algorithm

Algorithm 2: Boost-and-Clean Algorithm

Data: (X, Y
() 1 Initialize weights to be uniform

- (1) _
1 Initialize W,/ = &

2 L generates a set of classifiers C{C’(O), cW C’(k)} where Consider all the different

C'% is the base classifier and C'", ..., C'*) are derived from ©"umerations of

the cleaning operations detecting/repairing we could do
3 fort € [1,7] do
4 C't = Find C; € C that maximizes the weighted accuracy Choose the one that has the best
on the test set. €; = Calculate weighted classification accuracy on the weighted test set

error on the test set oy = In(===¢)

W%.(Hl) X Wi(t)e_‘“y’*?ct(a’i): down-weight correct
| predictions, up-weight incorrectly predictions.

s return C(x) = sign(>) a,Cy(x))

Repair Selection Algorithm > Boost-and-Clean Algorithm

Algorithm 2: Boost-and-Clean Algorithm

Data: (X, Y
() 1 Initialize weights to be uniform

- (1) _
1 Initialize W,/ = &

2 L generates a set of classifiers C{C’(O), cW C’(k)} where Consider all the different

C'9 is the base classifier and CV | ..., C'"*) are derived from €"umerations of
. . detecting/repairing we could do
the cleaning operations.
3 fort € [1,7] do

4 C't = Find C; € C that maximizes the weighted accuracy Choose the one that has the best
on the test set. €; = Calculate weighted classification accuracy on the weighted test set
1—e
error on the test set ay = 1]:1(Tt) Update weights for future
(t+1) (1) —aty;Ct(x;). : lassifi
W. T X W.:"e | t | t(@), down—w.el.ght correct classitiers
predictions, up-weight incorrectly predictions.

s return C(x) = sign(>) a,Cy(x))

Repair Selection Algorithm > Boost-and-Clean Algorithm

Algorithm 2: Boost-and-Clean Algorithm
Data: (X, Y)
1 Initialize W = L
2 L generates a set of classifiers C{C’(O), cW C’(k)} where Consider all the different
C'9 is the base classifier and CV | ..., C'"*) are derived from €"umerations of
the cleaning operations. detecting/repairing we could do
3 fort € [1,7] do

Initialize weights to be uniform

4 C't = Find C; € C that maximizes the weighted accuracy Choose the one that has the best
on the test set. €; = Calculate weighted classification accuracy on the weighted test set
L 1—e
error on the test set oy = 1]:1(Tt) Update weights for future
(t+1) (1) ,—aty; Ce(x;). ' classifiers
W, o W."e | t | t@), down—welght correct .
| predictions, up-weight incorrectly predictions.
s T Return entire ensemble that
5 return O(m) - Slgn(Zt atCy (:B)) classifies via weighted voting

Repair Selection Algorithm > Boost-and-Clean Algorithm > Complexity

Complexity

O(kthest + thrain)
k = # of data cleaning operations
N¢osr = # Of test tuples
N¢pqin = # of training tuples

Speeding up the enumeration step
* Prediction Materialization
* Pre-train classifier C; with cleaning operation [;
* When searching, just run pre-trained C; on reweighted test data

* Prediction Indexing
e Cache <test record, prediction> pairs for C;
* Use cached pairs when computing test accuracy

* Parallelization
e Use multiple processors when choosing next cleaning operations

Repair Selection Algorithm > Why Boosting?

Why boosting?

1. Can make fewer assumptions about the classifier and data cleaning operations
. It prioritizes cleaning operations that improve performance
. If no such operation exists it does no worse than the base classifier

2
3
4. ltis agnostic to the implementation of the classifiers
5

. Boosting over B cleaning operations gives us an error rate of O(e”-2B)

The BoostClean System

Blue: Manages detector and repair libraries

Orange: Execute Boost-and-Clean algorithm

Test Training
data data
Boost & Clean Detector Librar
e / Detectors h
IsoDetect » '

F 3

F 3

Repair Library

v

LA}.-
N Test Accuracy Deployer , Robu:"?t. i
Evaluator Classifier C*

v

Figure 3: BoostClean system architecture.

The BoostClean System

Blue: Manages detector and repair libraries

Orange: Execute Boost-and-Clean algorithm

Test Training _
data data BoostClean provides

Some defaults

Boost & Clean /v{tector L‘i;;*
/ Detectors h

I IsoDetect _

1
N Test Accuracy Deployer , Robu:"?t. i
Evaluator Classifier C*

v

Figure 3: BoostClean system architecture.

The BoostClean System > Detectors

Detectors

* Missing values
 Check for “NULL", “NaN”, “Inf”

* Parsing/Type errors

 Compare attribute’s type against common libraries

(dates, addresses, etc.)

e Numerical attributes

e Anomalies in text

e Using text2vec neural network
and outlier detection

China is to Bejing as
Russia is to ...

0.5

-0.5 +

-

Country and Capital Vectors Projected by PCA

T T
China¢

»Beijing
Russia¢
Japan«
*Moscow
Turkey »Ankara ~*Tokyo
Poland¢
Germxany<
France "Warsaw
» Berlin
Italy< Paris
Greece ~ac - Athens
L. Spain¢ Rome
| 2 *Madrid
Portugal iisbon
1 1
2 -1.5 1 -0.5 0 0.5 1 1.5

The BoostClean System > Detectors

Detect outliers using IsoDetect

* Developers can define featurization functions f
e Takes some attribute value and turns it into a numerical vector

Ex: f('Oregon’) =< 0.43,0.91 >

* Featurizes attributes and runs an isolation forest in order to determine the correct threshold
* |solation forests are made up of many decision trees that make random splits
* Points that are isolated closer to the root (leaves) on average are more likely to be outliers

* |f a featurized attribute value exceeds that threshold, then it is an outlier

The BoostClean System > Detectors > Isolation Forest

Make n trees and calculate average distance from root to isolation for points. We can establish a threshold.

Depth

20

The BoostClean System > Repairs

Data and prediction repairs:
 Mean Imputation (data and prediction)
 Mean computed over non-violated training cells

 Median Imputation (data and prediction)

 Median computed over non-violated training cells
Mode Imputation (data and prediction)

* Mode computed over non-violated training cells

* Includes non-numeric values
e Discard Record (data)

* Discard training data record
Default Prediction (prediction)

* Default prediction to most common label in training data

Experiments > Setup and Methods
Wethod Deserpon
No Cleaning (NC) Train a model with NO cleaning of train or test
Quantitative (Q) Only use isolation forests to impute mean values
Integrity Constraint (IC) Defined ICs and repaired to minimize distortion from dome ideal distribution

Quantitative + IC (Q+IC) Same as Q, but impute with most common value for IC

Best Single (Best-1) Run BoostClean with B=1 and identify single best conditional repair

Worst Single (Worst-1) Run BoostClean with B=1 and identify single worst conditional repair

BC-3 Run BoostClean with B=3

BC-5 Run BoostClean with B=5

Test Data

* 60-20-20 Dataset split (train, validation, test)

Models:

» Sklearn random forest classifier with default parameters (mostly) and its own featurizers
Timing:

* Amazon EC2 m4.16xlarge instance (64 virtual cpus 256 memory)

Experiments > Datasets

ML Competition

* Datasets from Kaggle competitions with defined prediction goals

* Even though they were published, they contain missing values, numerical outliers, and pattern
errors

* No parameter tuning

Data Analytics

* Used as benchmarks for previous data cleaning papers

* Significant errors

* Tuned classifier and detector hyperparameters for each dataset

Company X
* Proprietary data (so can’t say much about it)
 Significant class imbalance

* Accuracy measured by AUC

Experiments > Accuracy

ML Competition #rows | #cols | NC Q IC | Q+IC | Best-1 | Worst-1 | BC-3 | BC5 | Rel. Improvement
USCensus 32561 15 085] 0.82 | 0.86 | 0.84 0.87 0.79 | 0.88 | 0.91 +4.5%
Emergency 11176 91067 | 072|067 | 072 0.72 0.66 | 072 | 0.75 +4.7%
Sensor 928991 51092 1093|092 | 0.89 0.92 0.8 | 0.94 | 094 +1.3%
NFL 46129 65 | 0.74 | 0.74 | 076 | 0.75 0.76 074 | 079 | 0.82 +5.1%
EEG 2406 321079 | 0.82 | 0.79 | 0.83 0.83 0.7 | 0.85 | 0.89 +6.8%
Titanic 891 12 | 0.83 | 0.72 | 0.83 | 0.76 0.83 0.69 | 0.83 | 0.84 +1.1%
Housing 1460 81 | 073 | 076 | 073 | 0.77 0.77 0.65 | 0.81 | 0.76 +5.1%
Retail 541909 8 | 0.88 | 0.88 | 0.91 0.91 0.91 0.87 | 094 | 0.95 +4.3%
Data Analytics #rows | #cols | NC Q IC | Q+IC Best Worst | BC-3 | BC5 | Rel. Improvement
FEC 6410678 18 | 0.62 | 0.53 | 0.61 0.57 0.71 051 074 | 077 +8.4%
Restaurant (Multiclass) 758 41042 | 042 | 058 | 0.68 0.62 0.36 | 0.61 | 0.60 (1.61)%
Company X #rows | #cols | NC Q IC | Q+IC Best Worst | BC-3 | BC5 | Rel. Improvement
Dataset 1 (AUC) 76684 6 | 0.60 | 0.60 | 0.60 | 0.60 0.61 0.59 | 0.66 | 0.69 +13.3%
Dataset 2 (AUC) 83986 6| 055 |05 | 052] 055 0.55 0.52 | 0.61 | 0.63 +14.5%

Table 1: End-to-end accuracy results for each dataset and experimental method. We report standard classification accuracy. The right column
summarizes the absolute accuracy improvement over the best non BC-3/5 approach. The Company X datasets have high class imbalances
cause artificially high accuracy statistics, so we report AUC statistics for those datasets instead.

Experiments > End-to-End Run Time

Training Runtime on FEC
30min -

GE) 20min - . .
= o . Parallelize inner-loop

, , , - - of boosting algorithm

1Core 2 Core 4 Core 8 Core 16 Core
. Error Detect . Load Data . Repair Selection
Throughput on FEC

3
%‘20-
3 15
O]
%_j 10 Test2Vec is a little expensive
1R
< 0 FEC Dataset

Trammg Prediction Prediction No NN

Experiments > Detector Micro-Benchmarks

Wetnod loessipton

Hand-crafted rules (Custom) Manually written rules

Minimum Covariance Determinant (MCD) Featureized as one-hot encoding for categories and BoW for strings

Isolation Forests (I1SO) One-hot encoding for categories

BoostClean — Q (BC-Q) Quantitative only

BoostClean — Q,MV (BC-Q,MV) Quantitative and missing value featurizers

BoostClean — All (BC-all) Quantitative, missing value featurizers, and word embeddings

Experiments > Detector Micro-Benchmarks > F1 Score

Census EEG Emergency Housing

MCD- ¥ X* X X% N
1SO - X X X X
BC-Q- A A A A
BC-Q,MV - o N | O
BC-all - O O O o
Custom - —+ —+ —+ —+
NFL Retail Sensor Titanic
MCD -3 X X | ¥
ISO- X X X X
BC-Q - A A A A
BC-Q,MV - - n O 1
BC-all - o O O O
CUStom) 1 1 1 1 _!— 1 1 1 1 _!— 1 1 1 1 _!— 1 1 1 1 _!—
O 25 5 /5 10 25 5 45 10 25 5 /5 1 0 25 5 /5 1
F1 Score

Experiments > Detector Micro-Benchmarks > Runtime

Census EEG Emergency Housing

MCD - 3 X* X * N
1SO - X X X X
BC-Q - A A A A
BC-Q,MV - N N N O
BC-all -) ® O o
Custom - + + + +
NFL Retail Sensor Titanic
MCD - * X * x
1SO - X X X X
BC-Q - A A A A
BC-Q,MV - O o N =
BC-all - o O O o
CUStom) 1 _I'_ 1 1 I—I_ 1 1 _'_ 1 1 1 _'_] 1
1s 1m 1lhr 1s 1m 1lhr 1s 1m 1lhr 1s 1Im 1lhr
Time (s, log)

Experiments > Repair Micro-Benchmarks

BoostClean Runtime (no parallelism)

4hr -
© 3hr-
3
= 2hr -
~ lhr-
38)r8: %
' ' ' J ! Number of
- 2 3 4 S } cleaners B

Boost-and-Clean Iteration
—8— Indexing —&— Materialization —#- Naive

* Prediction Indexing
* Cache <test record, prediction> pairs for C;
* Use cached pairs when computing test accuracy

* Prediction Materialization
* Pre-train classifier C; with cleaning operation [;

* When searching, just run pre-trained C; on reweighted test data
FEC Dataset

Experiments > Repair Micro-Benchmarks
BoostClean Accuracy for Different Models

=

o 08 -

Q]

T

= 0.6-

(V)]

(Vp]

L 05-

@) I ' ' I ! Number of
2 3 4 2 } cleaners B

Boost-and-Clean Iteration

—8— Logistic Regression —#— Random Forest —#— SVM

BoostClean begins to overfit with B > 3

FEC Dataset

Summary > Contributions

What we saw in this paper:
1. Cleaning as Boosting
 Using statistical boosting (ensembles), automatically select the best cleaning operations
from a library in order to maximize the predictive performance of a downstream model
2. Automatic Model Improvements
 Evaluate BoostClean on 12 different datasets
 Improved prediction accuracy of up to 9% compared to non-ensembled approaches
3. Error Detection Library
* Built-in error detection library
* Includes Word2Vec featurization
 Achieves 81% accuracy of all errors found by hand-written rules
4. Optimizations
* Parallelism, materialization, and indexing
e 22.2x end-to-end speedup on a 16-core machine

