
BoostClean: Automated
Error Detection and Repair
for Machine Learning
SANJAY KRISHNAN, MICHAEL J. FRANKLIN, KEN GOLDBERG,

EUGENE WU

Presented by Christopher Buss

1

Introduction > Contributions

What we’ll see in this paper:
1. Cleaning as Boosting

• Using statistical boosting (ensembles), automatically select the best cleaning operations
from a library in order to maximize the predictive performance of a downstream model

2. Automatic Model Improvements
• Evaluate BoostClean on 12 different datasets
• Improved prediction accuracy of up to 9% compared to non-ensembled approaches

3. Error Detection Library
• Built-in error detection library
• Includes Word2Vec featurization
• Achieves 81% accuracy of all errors found by hand-written rules

4. Optimizations
• Parallelism, materialization, and indexing
• 22.2x end-to-end speedup on a 16-core machine

2

Introduction > Problem Overview

Dirty data can bias predictions and degrade model accuracy.
• Recall Simpson’s Paradox (discussed in ActiveClean paper)

3

Introduction > Problem Overview

Dirty data can bias predictions and degrade model accuracy.
• Recall Simpson’s Paradox (discussed in ActiveClean paper)

Garbage in, garbage out
• Must clean data in the correct way for a good model

Cleaning is a necessity! How is this normally done?

4

Introduction > The General Pipeline

Pipeline of scripts to downstream model
1. Take in n datasets
2. Use Booleans to detect a subset of dirty data
3. Apply repairs to fix those records

5

Introduction > The General Pipeline

Pipeline of scripts to downstream model
1. Take in n datasets
2. Use Booleans to detect a subset of dirty data
3. Apply repairs to fix those records

More data, more problems
• New data means new (unforeseen) problems
• Must update detect and repair scripts regularly

Q: How can human effort be reduced?

6

Introduction > The General Pipeline

Pipeline of scripts to downstream model
1. Take in n datasets
2. Use Booleans to detect a subset of dirty data
3. Apply repairs to fix those records

More data, more problems
• New data means new (unforeseen) problems
• Must update detect and repair scripts regularly

Q: How can human effort be reduced?
A: Automate the detection and repair of a common class of data errors
called domain value violations (values outside the domain of the given
type)

7

Introduction > BoostClean

BoostClean
Goal: Find the best ensemble of detect and repair operations in order to
repair domain value violations and maximize the predictive
performance of model

8

Introduction > BoostClean

BoostClean
Goal: Find the best ensemble of detect and repair operations in order to
repair domain value violations and maximize the predictive
performance of model

Components:
1. Error Detector (detect)

• Generate predicates (rules) using Isolation forests on
featurized values

2. Repair Selector (repair)
• Use boosting to generate a sequence of repair scripts

9

Background > Some Notes

What BoostClean does:

• Address systemic errors due to invariant
violations that lead to unforeseen biases in
the model

• Think ActiveClean

What BoostClean does not do:

• Repair the entire relation
• this could actually degrade performance!

• Address more difficult errors
• Leave things like deduplication up to engineers

10

Problem Statement > Setup

BoostClean takes…

1. A set of test and train data
• 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛 , 𝑋𝑡𝑒𝑠𝑡, 𝑌𝑡𝑒𝑠𝑡 (𝑌𝑡𝑒𝑠𝑡 must be non-dirty!)

2. A user defined function that returns a classifier 𝐶
• 𝑡𝑟𝑎𝑖𝑛 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛

• BoostClean will repair data and pass it to 𝑡𝑟𝑎𝑖𝑛()

• No need to be concerned with detect/repair pipeline

3. A library of detectors* to generate predicates 𝑝𝑖

• 𝒟 = 𝑑1, …

4. A library of repair functions* to apply to data
• ℱ = {𝑓1, … } *Optional. BoostClean has default 𝒟

and ℱ, but user can extend library with
domain-specific functions

11

Problem Statement > Setup > Lead Prediction Example

Leads: R(id, name, num_emp, industry, region, successful)

Goal: Predict whether a lead is successful

Provide:

12

Problem Statement > Setup > Lead Prediction Example

Leads: R(id, name, num_emp, industry, region, successful)

Goal: Predict whether a lead is successful

Provide:

1. 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑡𝑒𝑠𝑡 = {𝑛𝑎𝑚𝑒, 𝑛𝑢𝑚_𝑒𝑚𝑝, industry, region}

2. 𝑌𝑡𝑟𝑎𝑖𝑛, 𝑡𝑒𝑠𝑡 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙

13

Problem Statement > Setup > Lead Prediction Example

Leads: R(id, name, num_emp, industry, region, successful)

Goal: Predict whether a lead is successful

Provide:

1. 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑡𝑒𝑠𝑡 = {𝑛𝑎𝑚𝑒, 𝑛𝑢𝑚_𝑒𝑚𝑝, industry, region}

2. 𝑌𝑡𝑟𝑎𝑖𝑛, 𝑡𝑒𝑠𝑡 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙

3. 𝑡𝑟𝑎𝑖𝑛(.)

• Returns an SVM 𝐶 that predicts 𝑦𝑖 (true, false) given row 𝑥𝑖

14

Problem Statement > Setup > Lead Prediction Example

Leads: R(id, name, num_emp, industry, region, successful)

Goal: Predict whether a lead is successful

Provide:

1. 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑡𝑒𝑠𝑡 = {𝑛𝑎𝑚𝑒, 𝑛𝑢𝑚_𝑒𝑚𝑝, industry, region}

2. 𝑌𝑡𝑟𝑎𝑖𝑛, 𝑡𝑒𝑠𝑡 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙

3. 𝑡𝑟𝑎𝑖𝑛(.)

• Returns an SVM 𝐶 that predicts 𝑦𝑖 (true, false) given row 𝑥𝑖

Evaluate 𝐶 :

𝑎𝑐𝑐 𝐶 =
|{∀𝑥, 𝑦 ∈ 𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑒𝑠𝑡 ∶ 𝐶 𝑥, 𝑛𝑢𝑙𝑙 . 𝑦 = 𝑦}|

|𝑌𝑡𝑒𝑠𝑡|

15

Problem Statement > Setup

BoostClean takes…

1. A set of test and train data
• 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛 , 𝑋𝑡𝑒𝑠𝑡, 𝑌𝑡𝑒𝑠𝑡 (𝑌𝑡𝑒𝑠𝑡 must be non-dirty!)

2. A user defined function that returns a classifier 𝐶
• 𝑡𝑟𝑎𝑖𝑛 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛

• BoostClean will repair data and pass it to 𝑡𝑟𝑎𝑖𝑛()

• No need to be concerned with detect/repair pipeline

3. A library of detectors* to generate predicates 𝑝𝑖

• 𝒟 = 𝑑1, …

4. A library of repair functions* to apply to data
• ℱ = {𝑓1, … } *Optional. BoostClean has default 𝒟

and ℱ, but user can extend library with
domain-specific functions

16

Problem Statement > Detection Generators and Predicates

Use di ∈ 𝒟 to generate predicate

• 𝑑𝑖(𝑑𝑎𝑡𝑎) returns predicate 𝑝𝑖

• Example: 𝑝𝑖 𝑟 = 𝑟. 𝑛_𝑒𝑚𝑝 ≤ 0 returns {𝑛_𝑒𝑚𝑝} if true, otherwise ∅

Use 𝑓𝑖 ∈ ℱ to repair data

• Data repairs
• modify labels, delete records

• Prediction repairs
• default prediction if data is

too corrupt

17

Problem Statement > Detection Generators and Predicates

Putting it together with conditional repairs

1. Combine 𝑝𝑖 and 𝑓𝑖 into repair functions:

NOTE: Repair functions take 𝑟 AND 𝑟𝑜𝑟𝑖𝑔 (we’ll see why)

18

Problem Statement > Detection Generators and Predicates > Examples

Data repair:

Prediction repair:

19

Problem Statement > Detection Generators and Predicates

Some notation…

𝐿 = (𝑙1, … 𝑙𝑛) is a sequence of generated repairs s.t. 𝐿 ∈ 𝒟 × ℱ
• 𝐿𝑑 - data repairs, 𝐿𝑝 - prediction repairs

20

Problem Statement > Detection Generators and Predicates

Some notation…

𝐿 = (𝑙1, … 𝑙𝑛) is a sequence of generated repairs s.t. 𝐿 ∈ 𝒟 × ℱ
• 𝐿𝑑 - data repairs, 𝐿𝑝 - prediction repairs

Run data through sequence of data repair functions:
𝑋𝑡𝑟𝑎𝑖𝑛

′ , 𝑌𝑡𝑟𝑎𝑖𝑛
′ = 𝐿𝑑 𝑟, 𝑟 𝑟 ∈ 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛

𝐶 = 𝑡𝑟𝑎𝑖𝑛 𝑋𝑡𝑟𝑎𝑖𝑛
′ , 𝑌𝑡𝑟𝑎𝑖𝑛

′

𝐿𝑑 𝑟, 𝑟 = 𝑙𝑘 𝑙𝑘−1 … 𝑙1 𝑟, 𝑟 , 𝑟 , 𝑟 , 𝑟)|𝑙𝑖 ∈ 𝐿𝑑

21

Problem Statement > Detection Generators and Predicates

Some notation…

𝐿 = (𝑙1, … 𝑙𝑛) is a sequence of generated repairs s.t. 𝐿 ∈ 𝒟 × ℱ
• 𝐿𝑑 - data repairs, 𝐿𝑝 - prediction repairs

Run data through sequence of data repair functions:
𝑋𝑡𝑟𝑎𝑖𝑛

′ , 𝑌𝑡𝑟𝑎𝑖𝑛
′ = 𝐿𝑑 𝑟, 𝑟 𝑟 ∈ 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛

𝐶 = 𝑡𝑟𝑎𝑖𝑛 𝑋𝑡𝑟𝑎𝑖𝑛
′ , 𝑌𝑡𝑟𝑎𝑖𝑛

′

𝐿𝑑 𝑟, 𝑟 = 𝑙𝑘 𝑙𝑘−1 … 𝑙1 𝑟, 𝑟 , 𝑟 , 𝑟 , 𝑟)|𝑙𝑖 ∈ 𝐿𝑑

Choose last prediction repair:
𝑙∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑙𝑖∈𝐿𝑝^𝑙𝑖 𝑟 =𝑡𝑟𝑢𝑒 𝑖

22

Problem Statement > Detection Generators and Predicates

Some notation…

𝐿 = (𝑙1, … 𝑙𝑛) is a sequence of generated repairs s.t. 𝐿 ∈ 𝒟 × ℱ
• 𝐿𝑑 - data repairs, 𝐿𝑝 - prediction repairs

Run data through sequence of data repair functions:
𝑋𝑡𝑟𝑎𝑖𝑛

′ , 𝑌𝑡𝑟𝑎𝑖𝑛
′ = 𝐿𝑑 𝑟, 𝑟 𝑟 ∈ 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛

𝐶 = 𝑡𝑟𝑎𝑖𝑛 𝑋𝑡𝑟𝑎𝑖𝑛
′ , 𝑌𝑡𝑟𝑎𝑖𝑛

′

𝐿𝑑 𝑟, 𝑟 = 𝑙𝑘 𝑙𝑘−1 … 𝑙1 𝑟, 𝑟 , 𝑟 , 𝑟 , 𝑟)|𝑙𝑖 ∈ 𝐿𝑑

Choose last prediction repair:
𝑙∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑙𝑖∈𝐿𝑝^𝑙𝑖 𝑟 =𝑡𝑟𝑢𝑒 𝑖

Put it together:

𝐶𝐿 𝑟 = ൝
𝐶(𝐿𝑑(𝑟, 𝑟))

𝑙∗ 𝐿𝑑 𝑟, 𝑟 , 𝑟

𝑖𝑓 𝑙∗ 𝑛𝑜𝑡 𝑓𝑜𝑢𝑛𝑑
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

23

Problem Statement > Problem Statement

We want the optimal sequence of detect/repair operations:
𝐿∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝐿∈𝒟×ℱ 𝑎𝑐𝑐(𝐶𝐿)

24

Problem Statement > Problem Statement

We want the optimal sequence of detect/repair operations:
𝐿∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝐿∈𝒟×ℱ 𝑎𝑐𝑐(𝐶𝐿)

Q: Can we cheat?

25

Problem Statement > Problem Statement

We want the optimal sequence of detect/repair operations:
𝐿∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝐿∈𝒟×ℱ 𝑎𝑐𝑐(𝐶𝐿)

Q: Can we cheat?

A: Yes! Be greedy and make “repairs” that are highly correlated with 𝐶’s
accuracy!

26

Problem Statement > Problem Statement

We want the optimal sequence of detect/repair operations:
𝐿∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝐿∈𝒟×ℱ 𝑎𝑐𝑐(𝐶𝐿)

Q: Can we cheat?

A: Yes! Be greedy and make “repairs” that are highly correlated with 𝐶’s
accuracy!

What if we take mispredictions from previous conditional repairs into
account?

• BoostClean does this by using a modified version of the Adaboost
algorithm

27

Repair Selection Algorithm > AdaBoost Overview

Key Concepts of AdaBoost:

1. Iteratively create “weak learners” to add to an ensemble of learners
• Weak learners: > 50% accuracy (weak learners are cheap!)

2. Concentrate on data misclassified by earlier learners
• Weight the data s.t. high weight = misclassified often by previous learners

• Misclassifying highly weighted data means a higher error in model

3. When testing, have learners “vote” on classes
• Learners are also weighted based on how well they predict

4. We want to maximize the weighted accuracy by minimizing the weighted error

𝑎𝑐𝑐 𝐶, 𝑊 =
σ𝑥,𝑦 𝑊 𝑥, 𝑦 (𝐶 𝑥, 𝑛𝑢𝑙𝑙 . 𝑦 = 𝑦)

σ𝑥,𝑦 𝑊(𝑥, 𝑦)

28

Repair Selection Algorithm > Boost-and-Clean Algorithm

Initialize weights to be uniform

29

Repair Selection Algorithm > Boost-and-Clean Algorithm

Initialize weights to be uniform

Consider all the different
enumerations of
detecting/repairing we could do

30

Repair Selection Algorithm > Boost-and-Clean Algorithm

Initialize weights to be uniform

Consider all the different
enumerations of
detecting/repairing we could do

Choose the one that has the best
accuracy on the weighted test set

31

Repair Selection Algorithm > Boost-and-Clean Algorithm

Initialize weights to be uniform

Consider all the different
enumerations of
detecting/repairing we could do

Choose the one that has the best
accuracy on the weighted test set

Update weights for future
classifiers

32

Repair Selection Algorithm > Boost-and-Clean Algorithm

Initialize weights to be uniform

Consider all the different
enumerations of
detecting/repairing we could do

Choose the one that has the best
accuracy on the weighted test set

Update weights for future
classifiers

Return entire ensemble that
classifies via weighted voting

33

Repair Selection Algorithm > Boost-and-Clean Algorithm > Complexity

Complexity
𝑂 𝑘2𝑁𝑡𝑒𝑠𝑡 + 𝑘𝑁𝑡𝑟𝑎𝑖𝑛

𝑘 = # of data cleaning operations
𝑁𝑡𝑒𝑠𝑡 = # of test tuples
𝑁𝑡𝑟𝑎𝑖𝑛 = # of training tuples

Speeding up the enumeration step
• Prediction Materialization

• Pre-train classifier 𝐶𝑖 with cleaning operation 𝑙𝑖

• When searching, just run pre-trained 𝐶𝑖 on reweighted test data

• Prediction Indexing
• Cache <test record, prediction> pairs for 𝐶𝑖

• Use cached pairs when computing test accuracy

• Parallelization
• Use multiple processors when choosing next cleaning operations

34

Repair Selection Algorithm > Why Boosting?

Why boosting?

1. Can make fewer assumptions about the classifier and data cleaning operations

2. It prioritizes cleaning operations that improve performance

3. If no such operation exists it does no worse than the base classifier

4. It is agnostic to the implementation of the classifiers

5. Boosting over B cleaning operations gives us an error rate of O(e^-2B)

35

The BoostClean System

Blue: Manages detector and repair libraries

Orange: Execute Boost-and-Clean algorithm

36

The BoostClean System

Blue: Manages detector and repair libraries

Orange: Execute Boost-and-Clean algorithm

BoostClean provides
Some defaults

37

The BoostClean System > Detectors

Detectors

• Missing values

• Check for “NULL”, “NaN”, “Inf”

• Parsing/Type errors

• Compare attribute’s type against common libraries
(dates, addresses, etc.)

• Numerical attributes

• Anomalies in text

• Using text2vec neural network
and outlier detection

China is to Bejing as
Russia is to …

38

The BoostClean System > Detectors

Detect outliers using IsoDetect

• Developers can define featurization functions 𝑓
• Takes some attribute value and turns it into a numerical vector

𝐸𝑥: 𝑓 ′𝑂𝑟𝑒𝑔𝑜𝑛′ = < 0.43, 0.91 >

• Featurizes attributes and runs an isolation forest in order to determine the correct threshold
• Isolation forests are made up of many decision trees that make random splits

• Points that are isolated closer to the root (leaves) on average are more likely to be outliers

• If a featurized attribute value exceeds that threshold, then it is an outlier

39

The BoostClean System > Detectors > Isolation Forest

Make n trees and calculate average distance from root to isolation for points. We can establish a threshold.

40

The BoostClean System > Repairs

Data and prediction repairs:
• Mean Imputation (data and prediction)

• Mean computed over non-violated training cells
• Median Imputation (data and prediction)

• Median computed over non-violated training cells
• Mode Imputation (data and prediction)

• Mode computed over non-violated training cells
• Includes non-numeric values

• Discard Record (data)
• Discard training data record

• Default Prediction (prediction)
• Default prediction to most common label in training data

41

Experiments > Setup and Methods
Method Description

No Cleaning (NC) Train a model with NO cleaning of train or test

Quantitative (Q) Only use isolation forests to impute mean values

Integrity Constraint (IC) Defined ICs and repaired to minimize distortion from dome ideal distribution

Quantitative + IC (Q+IC) Same as Q, but impute with most common value for IC

Best Single (Best-1) Run BoostClean with B=1 and identify single best conditional repair

Worst Single (Worst-1) Run BoostClean with B=1 and identify single worst conditional repair

BC-3 Run BoostClean with B=3

BC-5 Run BoostClean with B=5

Test Data
• 60-20-20 Dataset split (train, validation, test)
Models:
• Sklearn random forest classifier with default parameters (mostly) and its own featurizers
Timing:
• Amazon EC2 m4.16xlarge instance (64 virtual cpus 256 memory)

42

Experiments > Datasets

ML Competition
• Datasets from Kaggle competitions with defined prediction goals
• Even though they were published, they contain missing values, numerical outliers, and pattern

errors
• No parameter tuning

Data Analytics
• Used as benchmarks for previous data cleaning papers
• Significant errors
• Tuned classifier and detector hyperparameters for each dataset

Company X
• Proprietary data (so can’t say much about it)
• Significant class imbalance

• Accuracy measured by AUC

43

Experiments > Accuracy

44

Experiments > End-to-End Run Time

Parallelize inner-loop
of boosting algorithm

FEC Dataset
• 1.5GB
• ~6 million records

Test2Vec is a little expensive

45

Experiments > Detector Micro-Benchmarks

Method Description

Hand-crafted rules (Custom) Manually written rules

Minimum Covariance Determinant (MCD) Featureized as one-hot encoding for categories and BoW for strings

Isolation Forests (ISO) One-hot encoding for categories

BoostClean – Q (BC-Q) Quantitative only

BoostClean – Q,MV (BC-Q,MV) Quantitative and missing value featurizers

BoostClean – All (BC-all) Quantitative, missing value featurizers, and word embeddings

46

Experiments > Detector Micro-Benchmarks > F1 Score

47

Experiments > Detector Micro-Benchmarks > Runtime

48

Experiments > Repair Micro-Benchmarks

• Prediction Indexing
• Cache <test record, prediction> pairs for 𝐶𝑖

• Use cached pairs when computing test accuracy

• Prediction Materialization
• Pre-train classifier 𝐶𝑖 with cleaning operation 𝑙𝑖

• When searching, just run pre-trained 𝐶𝑖 on reweighted test data
FEC Dataset
• 1.5GB
• ~6 million records

Number of
cleaners B

49

Experiments > Repair Micro-Benchmarks

BoostClean begins to overfit with B > 3

FEC Dataset
• 1.5GB
• ~6 million records

Number of
cleaners B

50

Summary > Contributions

What we saw in this paper:
1. Cleaning as Boosting

• Using statistical boosting (ensembles), automatically select the best cleaning operations
from a library in order to maximize the predictive performance of a downstream model

2. Automatic Model Improvements
• Evaluate BoostClean on 12 different datasets
• Improved prediction accuracy of up to 9% compared to non-ensembled approaches

3. Error Detection Library
• Built-in error detection library
• Includes Word2Vec featurization
• Achieves 81% accuracy of all errors found by hand-written rules

4. Optimizations
• Parallelism, materialization, and indexing
• 22.2x end-to-end speedup on a 16-core machine

51

