
Interactive Program
Synthesis

The big picture

What if your excel was smart ?

#
#
#
#

#
#
#
#

#
#
#
#

#
#
#
#

#
#
#
#

#
#
#
#

#
#
#
#

#
#
#
#

User Intent

Programming

Language

Search
Algorithm Program

Program Synthesis: “The Ultimate Dream” of CS

#
#
#
#

2.1 Data Wrangling

2.2 Graphics

2.3 Code Repair

2.4 Code Suggestions

2.5 Modeling

2.6 Superoptimization

2.7 Concurrent Programming

Applications

#
#
#
#

Case for Data Wrangling.

99% of spreadsheet users
do not know programming

Data scientists spend 80% time
extracting & cleaning data

#
#
#
#

Case for Data Wrangling.

#
#
#
#

Milestones

A Case for Programming by Examples

- Focus on Data Wrangling.

User Intent

Programming

Language

Search
Algorithm Program

Intractable program space ☹

 Diversity of users intent☹

Programming By Examples
 Framework☺

Domain Specific Language (DSL)
+

Version Space Algebra (VSA)

☺

Key Challenges

#
#
#
#

PBE Timeline

#
#
#
#

Domain Specific Language (DSL)

● A domain-specific language (DSL) is a computer language specialized to a particular
application domain.
Eg. spreadsheet formulas and macros.

● A synthesis problem is defined for a given domain specific language (DSL) L.

● A DSL is specified as a context free grammar (CFG)

#
#
#
#
https://en.wikipedia.org/wiki/Computer_language
https://en.wikipedia.org/wiki/Domain_(software_engineering)
https://en.wikipedia.org/wiki/Spreadsheet

Domain Specific Language (DSL)

● Start, End

● concatenate(stringA, stringB)

● condition_on_char(condition, stringA)

● substring(stringA, start, end)

● kth_elem(stringA, k)

#
#
#
#

Version Space Algebra (VSA)

● A version space algebra (VSA) is a data structure for efficient storage of candidate
programs in deductive synthesis.

● Operations like union , intersection, Top_h (Ñ, k), and projection(filtering) is permitted

0

1

1

1

0

0

1 0

2 1

3 01

4 00

5 011

6 010

#
#
#
#

Version Space Algebra (VSA)

0

1

1

1

0

0

“42” “25”

“5” “2” “4”

#
#
#
#

Inductive Synthesis Problem

● P = Program
● Ñ = Set of Programs {P1, P2, …. Pn}
● L = Domain Specific Language (DSL)

● σ ⇝ ψ = Input output constraint (i.e. o/p of the program for i/p σ follows constraint ψ)

● φ = Collection of input output examples / constraints. (Specification)

● PBE and inductive synthesis used interchangeably.

An inductive synthesis problem refers to synthesis of a program set Ñ ⊂ L that is consistent

with a given inductive specification φ.

#
#
#
#

Inductive Synthesis Problem

#
#
#
#

BackPropagation / Deductive Synthesis

● The main synthesis algorithm in FlashMeta formalism employed for PBE.
● Follows the grammar top-down, applying the principle of divide and conquer.

● At each step, it reduces the synthesis problem to Learn (N, φ)

Learn (N, φ)

Learn (N1, φ1) Learn (N2, φ2)

● Backpropagate constraints on a program F (N1, … Nk) to deduced constraints on
its Subexpressions N1, . . ., Nk.

● Witness function W transforms the
Spec φ to corresponding spec φ‘ for N‘

#
#
#
#

Ranking Function

● The main idea of ranking is to assign a likelihood score to each program in the set of
programs, induced from a small set of input-output examples, such that the programs
with the highest scores correspond to the desired user-intended programs.

● In simple words (converts a set of programs to a ordered list, the top of the list is most
likely to be the desired program)

● Can be designed Manually [51, 84, 90, 106]
Or

● Generated using Machine learning [128, 30]

#
#
#
#

Milestones

A Case for Programming by Examples

- Focus on Data Wrangling.

Defining Program Synthesis

- Key Challenges
- Background

- Domain Specific Language (DSL)
- Inductive Synthesis Problem
- Version Space Algebra (VSA)
- Ranking Function & Backprop

PBE Architecture

12

3

4

5

6

7

8

9

10

#
#
#
#

Hurdles to Mass Market

● The performance of the Synthesizer.
○ Cannot wait more than 1-2 seconds per round. 🕑

∞● The correctness of Synthesized program.
○ Must capture a large class of tasks.

#
#
#
#

Inspirations Towards Interactivity.

● Incremental : (one logic at a time)

● Step-based : (One component at a time)

● Feedback-based : (Evolving codebase)

#
#
#
#

Inspirations: Incrementality

● Search over the same program space N ∈ L .
● Growing number of constraints φ
● Decreasing number of output programs Ñ

DSL L φ

DSL L φ

DSL L φ

Incremental : (one logic at a time)

Observation on each iteration:

What if I could update the DSL L after each iteration ?
- May be a sub-DSL ?

#
#
#
#

Inspirations: Incrementality

DSL L φ

DSL L φ

DSL L φ

● Search over the same program space N ∈ L .
● Growing number of constraints φ
● Decreasing number of output programs Ñ

Incremental : (one logic at a time)

Observation on each iteration:

What if I could update the DSL L after each iteration ?
- May be a sub-DSL ?

#
#
#
#

Inspirations: Step-based formulation

Step-based : (One component at a time)

Observation on each iteration:

DSL L φ

DSL L φ

DSL L φ

φ

● Black box model (DSL and ranking function)
● Dependence on counter example
● Whole program to be analyzed for generating

Counter-example.

What if I could focus on a part of the program for sub
expressions and fine tune that. Then move to next ?

#
#
#
#

Inspirations: Step-based formulation

DSL L φ

DSL L φ

DSL L φ

Step-based : (One component at a time)

Observation on each iteration:
● Black box model (DSL and ranking function)
● Dependence on counter example
● Whole program to be analyzed for generating

Counter-example.

What if I could focus on a part of the program for sub
expressions and fine tune that. Then move to next ?

#
#
#
#

Inspirations: Feedback based interaction

Feedback-based : (Evolving codebase)

Observation on each iteration:
DSL L φ

DSL L φ

DSL L

φ

φ

● No clear understanding of full spec φ.
● Lots of ambiguous programs Ñ
● Certain constraint disambiguates the program

set more than the other.

What if I could find the right set of next constraints
that shrinks the DSL themost. (say a hypothesizer)

#
#
#
#

Inspirations: Feedback based interaction

DSL L

DSL L

D
S
L
L

φ

φ

φ

φ
Feedback-based : (Evolving codebase)

Observation on each iteration:
● No clear understanding of full spec φ.
● Lots of ambiguous programs Ñ
● Certain constraint disambiguates the program

set more than the other.

What if I could find the right set of next constraints
that shrinks the DSL themost. (say a hypothesizer)

#
#
#
#

Inspirations Towards Interactivity.

● Incremental : (one logic at a time)
○ Sub - DSL search

● Step-based : (One component at a time)
○ Sub Expression Constraints

● Feedback-based : (Evolving codebase)
○ Best resolve ambiguity using Hypothesizer

to generate questions and answering them

DSL L

DSL L

D
S
L
L

φ

φ

φ

#
#
#
#

Interactive PBE Architecture

Program Synthesis Framework

Deployable code
in Python/R/C#/…

User (Debugging)

Hypothesizer

Interactive
questions

Translator

Test inputs

response

Best
program

Refined
intent

2 ��
😊

#
#
#
#

Milestones

A Case for Programming by Examples

- Focus on Data Wrangling.

Defining Program Synthesis

- Key Challenges
- Background

- Domain Specific Language (DSL)
- Inductive Synthesis Problem
- Version Space Algebra (VSA)

Hurdles to Mass Market

- Performance & Correctness

3 Key Inspirations towards Interactivity (Partial)

- Incremental : (one logic at a time)

- Step-based : (One component at a time)

- Feedback-based : (Evolving codebase)

1. Incremental Synthesis

VSA as a DSL

● VSA Ñ is a DAG-like program set
representation.

● It is simply an AST-based
representation of a sub-DSL L ‘ ⊂ L .

#
#
#
#

1. Incremental Synthesis

Constraint Resolution

● Definitive constraints
Constructively define a subset of DSL by their own. (irrespective of witness function)

#
#
#
#

1. Incremental Synthesis

Constraint Resolution

● Definitive constraints
Constructively define a subset of DSL by their own. (irrespective of witness function)

● Locally refining constraints
Do not define a subset of DSL on their own. But can trim/refine the DSL.(only relevant to

select witness functions.)

#
#
#
#

1. Incremental Synthesis

Constraint Resolution

● Definitive constraints
Constructively define a subset of DSL by their own. (irrespective of witness function)

● Locally refining constraints
Do not define a subset of DSL on their own. But can trim/refine the DSL.(only relevant to

select witness functions.)

● Globally refining constraints
Do not define a subset of DSL on their own and do not permit any local refining logic.

#
#
#
#

2. Step-based Synthesis

#
#
#
#

3. Feedback-based Synthesis : Q -> A

● Proposed learner-user interaction model that leverages proactive feedback in the form of
queries to the user. (Ask questions -> get Answers -> convert to constraints)

L = Domain Specific Language (DSL)

C T = all top-level constraint types supported by synthesizer .

C ∈ C T , C is a top-level constraint type.

ψ = instance_of(C) is a constraint.

C ∈ C T

For each C ∈ C T We associate a descriptive
“ question q “ such that a “ response r “
for this question directly

constitutes ψ = instance_of(C)

ψ = instance_of(C)

Response Question

#
#
#
#

3. Feedback-based Synthesis : Disamb Score

● Which questions to ask ?

Case Study:
General purpose disambiguation score
function.

Higher if every response for the question q
leads to a higher-ranked alternative program.

● To evaluate a question’s effectiveness, the hypothesizer is parameterized with a

disambiguation score function “ get_disambiguation_score(q, Ñ, φ). “
● Higher the score, greater the number of ambiguity resolved.
● Since response r is unknown, function represents the potential effectiveness
● May be domain-specific or general.

#
#
#
#

3. Feedback-based Synthesis

#
#
#
#

PBE Architecture

Program Synthesis Framework

Deployable code
in Python/R/C#/…

User (Debugging)

Hypothesizer

Interactive
questions

Translator

Test inputs

response

Best
program

Refined
intent

2 ��
😊

#
#
#
#

Milestones

A Case for Programming by Examples

- Focus on Data Wrangling.

Defining Program Synthesis

- Key Challenges
- Background

- Domain Specific Language (DSL)
- Inductive Synthesis Problem
- Version Space Algebra (VSA)

Hurdles to Mass Market

- Performance & Correctness

3 Key Inspirations towards Interactivity

- Incremental : (one logic at a time)

- Step-based : (One component at a time)

- Feedback-based : (Evolving codebase)

Evaluation - Incremental Synthesis

GM:
1.42

#
#
#
#

Evaluation - Step-based Synthesis
● Non Step-based: The baseline of this evaluation is a non-interactive FlashExtract where the user has

to provide examples for all the fields at once.
● Step-based: The user of this system extracts fields in topological order (i.e., from top-level fields to

leaf fields)

#
#
#
#

Evaluation - Feedback-based Synthesis

● FlashSplit We evaluate the feedback-driven synthesis for Flash-Split on
a set of 77 splitting tasks on different log files.

● Binary position questions. A binary position question q ∈ Qb
presents a single position in the input row and asks if it is a desired
splitting point.

● Confirmation questions. A confirmation question q ∈ Qc presents a
set of positions to the user and asks whether all of these posi-tions are
valid splitting points.

DSL L

DSL L

D
S
L
L

φ

φ

φ

φ
● baseline setting,Split position examples are provided randomly

until the splitting is correct.
● BinaryQ One random example is provided, after which the

system keeps asking binary position questions until the correct
program is achieved.

● ConfirmationQ One random example is provided by the user,
after which the system poses a confirmation question if one
exists.

● CombinedQ The system uses a combination of binary and
confir-mation questions, using the disambiguation score dsFS

#
#
#
#

Evaluation - Feedback-based Synthesis

Table 1: Number of rows inspected in the
baseline and the feedback driven settings for
FlashFill evaluation.

#
#
#
#

Milestones

A Case for Programming by Examples

- Focus on Data Wrangling.

Defining Program Synthesis

- Key Challenges
- Background

- Domain Specific Language (DSL)
- Inductive Synthesis Problem
- Version Space Algebra (VSA)

Hurdles to Mass Market

- Performance & Correctness

3 Key Inspirations towards Interactivity

- Incremental : (one logic at a time)

- Step-based : (One component at a time)

- Feedback-based : (Evolving codebase)

Results / Ablation Study.

Thank you !
Questions . . .

