
Problem Addressed

• Given a collection of objects, our goal is to 
find Top-k objects, whose scores are greater 
than the remaining objects.



A sample set of Databases
Object Area

(x3)

1

0.95

0.85

0.75

0.3

0.1

Object Redness
(x1)

1

1

0.67

0.6

0.5

0

Object Roundness
(x2)

1

1

0.5

0.2

0

0

Attributes

Grades

Every 
subsystem is 
sorted by 
the grade it 
holds



Before Moving On….

• Aggregate Function : Aggregate functions 
perform a calculation on a set of values and 
return a single value.

Eg: sum(), min()

• Monotone: In mathematics, a monotonic 
function is a function between ordered sets 
that preserves the given order.

i.e t(x1,…,xm) ≤ t(x’1,…,x’m) if xi ≤ x’i for every I
Eg : 



Before Moving on 

• Strictly Monotone: 
t(x1,…,xm) < t(x’1,…,x’m) if xi < x’i for every i

• Strict Monotone :
t(x1,…,xm) = 1 precisely when xi = 1 for every i



Before Moving On



middleware cost =  cost for processing data subsystems = scS + rcR

A = class of algorithms,  A Є A represents an algorithm

D = legal inputs to algorithms (databases),  D Є D represents a database

Cost(A,D ) = middleware cost when running algorithm A over database D

Before Moving On….

Algorithm B is instance optimal over A and D if :

B Є A and Cost(B,D ) = O(Cost(A,D ))    A Є A, D Є D

Which means that:

Cost(B,D ) ≤ c . Cost(A,D ) + c’,     A Є A, D Є D

optimality ratio

A

A

A



Top-k Object Problem

• Naïve Algorithm
• Fagin’s Algorithm
• Threshold Algorithm



Naïve Algorithm

• Basic Idea:
¾For for each object, use the aggregation function 

to get the score 
¾According to the scores, get the top k.
¾Since the time complexity is linear, it is not 

efficient for large database.



Questions

• Do we need to count the score for every 
object in the database?

• Can we SAFELY ignore some objects whose 
scores are lower than what we already have?



Fagin’s Algorithm

• Do Sorted access in parallel at all the lists
• Stop when we have k objects which appear in 

all the lists
• Calculate score value of all the objects
• Compute Top-k objects



Example: Fagin’s Algorithm

{    }

1 Objects appear in 
every list:

Objects seen so far:

{      ,         }

k = 3



Example: Fagin’s Algorithm

{    }

2 Objects appear in 
every list:

Objects seen so far:

{      ,         ,         ,       }

k = 3



Example: Fagin’s Algorithm

{        }

3 Objects appear in 
every list:

Objects seen so far:

{      ,         ,         ,      ,         }

k = 3



Example: Fagin’s Algorithm

{        ,          ,       }

4 Objects appear in 
every list:

Objects seen so far:

{      ,         ,         ,      ,         }

We got enough objects

k = 3



Example: Fagin’s Algorithm

{        ,          ,       }

4 Objects appear in 
every list:

Objects seen so far:

{      ,         ,         ,      ,         }

We got enough objects

For all these, calculate the score 
and get the Top-k

k = 3



The Threshold Algorithm

• Do Sorted access in parallel at all the lists until τ < g
– For each object R that has been seen at least once in any of 

the list 
• Do random accesses to get the attribute values of R from 

the lists where the object has not been seen yet.
• Compute t(R) and update the list of top k objects (Y) if 

necessary.

– Compute τ = t(x1 ,x2 ,…,xm) where xi is the grade of 
the last seen object from list Li under sorted access.

– If τ is less than the lowest aggregated grade (g) of the 
top k set (Y) then halt.



Example : Threshold Algorithm

τ = 3 , Y = {      ,         } 
g = 1.81

x x

x-marked objects are the first to be seen of their kind and when seen they have been 
accessed in the other databases randomly to compute their aggregate function.

t=sum and k=3
iterations



Example : Threshold Algorithm

τ = 3 , Y = {      ,         } 
g = 1.81

2
τ = 2.95 , Y = {      ,        ,         } 
g = 1.8

x x

x
x

x-marked objects are the first to be seen of their kind and when seen they have been 
accessed in the other databases randomly to compute their aggregate function.

t=sum and k=3
iterations



Example : Threshold Algorithm

τ = 3 , Y = {      ,         } 
g = 1.8

τ = 2.02 , Y = {      ,        ,          } 
g = 1.95

1

2

3

τ = 2.95 , Y = {      ,        ,         } 
g = 1.8

x x

x
x

x-marked objects are the first to be seen of their kind and when seen they have been 
accessed in the other databases randomly to compute their aggregate function.

t=sum and k=3
iterations

x



Example : Threshold Algorithm

τ = 3 , Y = {      ,         } 
g = 1.8

τ = 2.02 , Y = {      ,        ,          } 
g = 1.95

τ = 1.55 , Y = {      ,        ,          } 
g = 1.95

1

2

3

4

τ = 2.95 , Y = {      ,        ,         } 
g = 1.8

x x

x
x

x-marked objects are the first to be seen of their kind and when seen they have been 
accessed in the other databases randomly to compute their aggregate function.

t=sum and k=3
iterations

x



When Sorted Access is Restricted

• --approximation to the top k answers for the
aggregation function t is a collection of k objects (each 

along with its grade) such that for each y among these 
k objects and each z not among these k objects, -
t(y)>=t(z)

• T - : As soon as at least k objects have been seen 
whose grade is at least equal to threshold/ - then 
halt.



Comparison of Fagin’s and Threshold Algorithm

• TA sees less objects than FA
• TA stops at least as early as FA

• When we have seen k objects in common in FA, their grades 
are higher or equal than the threshold in TA.

• TA may perform more random accesses than FA
• In TA, (m-1) random accesses for each object
• In FA, Random accesses are done at the end, only for missing 
grades 

• TA requires only bounded buffer space (k)
• At the expense of more random seeks
• FA makes use of unbounded buffers



Restricting Sorted Access

• A subset Z’ of the databases are not accessible 
under sorted access.

• TA is modified to handle such scenario.
• τ = t(x1 ,x2 ,…,xm) where xi is 1 for all 

inaccessible database Li.
• All databases in Z’ are accessed only under 

random access mode. 



Restricting Sorted Access

τ = 3 , Y = {      } 
g = 2.751

t=sum and k=3

x

Inaccessible under 
sorted access

x-marked objects are the first to be seen of 
their kind 



τ = 3 , Y = {      ,        ,    } 
g = 1.8

Restricting Sorted Access

τ = 3 , Y = {      } 
g = 2.751

2

t=sum and k=3

x

x
x

Inaccessible under 
sorted access

x-marked objects are the first to be seen of 
their kind 



τ = 3 , Y = {      ,        ,    } 
g = 1.8

Restricting Sorted Access

τ = 3 , Y = {      } 
g = 2.75

τ = 2.17 , Y = {      ,        ,          } 
g = 1.95

1

2

3

t=sum and k=3

x

x
x

x

Inaccessible under 
sorted access

x-marked objects are the first to be seen of 
their kind 



τ = 3 , Y = {      ,        ,    } 
g = 1.8

Restricting Sorted Access

τ = 3 , Y = {      } 
g = 2.75

τ = 2.17 , Y = {      ,        ,          } 
g = 1.95

τ = 1.8 , Y = {      ,        ,          } 
g = 1.95

1

2

3

4

t=sum and k=3

x

x
x

x

x

Inaccessible under 
sorted access

x-marked objects are the first to be seen of 
their kind 



Restricting Random Access

• If t is a monotone , W(R) is a lower bound on 
t(R) computed by replacing unknown attribute 
values with 0 in t.

• B(R) is an upper bound on t(R) computed by 
replacing unknown attribute values with the 
least value seen in the database.

• Here Y is the top k list that contains k objects 
with the largest W values seen so far. Ties 
broken by B values and then arbitrarily.



Example: Restricting Random Access

Y = {      ,         }1

x1
1 - - - - -

x2
1 - - - - -

x3
- 1 - - - -

W 2 1 0 0 0 0

B 3 3 3 3 3 3

Y is the sorted top-k list



Example: Restricting Random Access

Y = {       ,         ,         }2

x1
1 - 1 - - -

x2
1 - - 1 - -

x3
- 1 0.95 - - -

W 2 1 1.95 1 0 0

B 2.95 3 2.95 2.95 2.95 2.95

W(        ) = 1+0+0.95 = 1.95



Example: Restricting Random Access

Y = {       ,         ,        }3

x1
1 - 1 - 0.67 -

x2
1 - - 1 0.5 -

x3
- 1 0.95 - 0.85 -

W 2 1 1.95 1 2.02 0

B 2.85 2.17 2.45 2.52 2.02 2.02

B(         ) = 0.67+0.5+1 = 2.17



Example: Restricting Random Access

Y = {       ,         ,        }4

x1
1 0.6 1 - 0.67 -

x2
1 0.2 - 1 0.5 -

x3
0.75 1 0.95 - 0.85 -

W 2.75 1.8 1.95 1 2.02 0

B 2.75 1.8 2.05 2.35 2.02 1.55



Example: Restricting Random Access

Y = {       ,         ,        }5

x1
1 0.6 1 0.5 0.67 -

x2
1 0.2 - 1 0.5 0

x3
0.75 1 0.95 0.3 0.85 -

W 2.75 1.8 1.95 1.8 2.02 0

B 2.75 1.8 1.95 1.8 2.02 0.8

At this point the algorithm halts because all the objects not in Y have smaller B values 
than the smallest W value in the Y which is 1.95 here.



Instance Optimality: Fagin’s 
Algorithm

• Database with N objects, each with m attributes.

• Orderings of lists are independent

• FA finds top-k with middleware cost 
O(N(m1)/mk1/m) 

• FA = optimal with high probability in the worst 
case for strict monotone aggregation functions



• TA = instance optimal (always optimal) for every monotone
aggregation function, over every database (excluding wild 
guesses)

= optimal in much stronger sense than Fagin’s Algorithm

• If strict monotone aggregation function:
Optimality ratio = m + m (m-1)cR/cs = best possible   (m = # 
attributes)

• If random acces not possible (cr = 0 ) Æ optimality ratio = m 
• If sorted access not possible (cs = 0) Æ optimality ratio = 
infinite

Æ TA not instance optimal

Instance Optimal : Threshold Algorithm



• TA = instance optimal (always optimal)  for 
every strictly monotone aggregation function, 
over every database (including wild guesses)
that satisfies the distinctness property

• Optimality ratio = cm2 with 
c = max {cR/cS,cS/cR}
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Algorithm Comparision
(from Zhang2002 talk)

Algorithm Assumption Access 
Model

Termination
Worst Case

Termination 
Expected 

Buffer 
Space

FA Monotone Sorted 
Random

n(m-1)/m + 
k/m

Nm-1/mk1/m N

TA Monotone Sorted 
Random

Bounded by 
FA

Depends on 
distribution 

k

NRA Monotone Sorted N Depends on 
distribution

N


