Problem Addressed

* Given a collection of objects, our goal is to
find Top-k objects, whose scores are greater
than the remaining objects.



A sample set of Databases

Object | Area Object | Roundness Object | Redness | _— Attributes
(x3) (x,) (x,)

1 ‘ 1 ‘ 1 <& / Grades

0.5

0.67

0.85
subsystem is

0.3 05

0.1

[ )

- 0.95 !

‘ Every
O
*

- B
0.2
0.75 . . 0.6 sorted by
the grade it
holds
* O
__ *




Before Moving On....

* Aggregate Function : Aggregate functions
perform a calculation on a set of values and
return a single value.

Eg: sum(), min()

* Monotone: In mathematics, a monotonic
function is a function between ordered sets

that preserves the given order.
i.e (Xq,...,.X,) S {(X'q,....X ) If X; <X, for every |



Before Moving on

 Strictly Monotone:



Before Moving On

Sequential access
NN SN NN

R4 K4 [0

1 2 3 4 5 6 7 8

Random access

<1171l 1 -1, 1 7271, |

1 3 7 2 8 6 4 5



Before Moving On....

A = class of algorithms, A € A represents an algorithm

D = legal inputs to algorithms (databases), D € D represents a database
middleware cost = cost for processing data subsystems = scq + rcg

Cost(A,D ) = middleware cost when running algorithm A over database D

Algorithm B is instance optimal over A and D if :
B € A and Cost(B,D) = O(Cost(A,D))VAEA, VDED
Which means that:
Cost(B,D)<c.Cost(A,D)+c, AEA, v D €D

T

optimality ratio




Top-k Object Problem

* Naive Algorithm
* Fagin’s Algorithm
* Threshold Algorithm



Naive Algorithm

e Basic ldea:

» For for each object, use the aggregation function
to get the score

» According to the scores, get the top k.

»Since the time complexity is linear, it is not
efficient for large database.



Questions

* Do we need to count the score for every
object in the database?

* Can we SAFELY ignore some objects whose
scores are lower than what we already have?



Fagin’s Algorithm

Do Sorted access in parallel at all the lists

Stop when we have k objects which appear in
all the lists

Calculate score value of all the objects
Compute Top-k objects



Example: Fagin’s Algorithm

Objects appear in
every list:

1}

Objects seen so far:

@

Object | Redness Object | Roundness Object | Area

(x,) (x,) (x3)

Il I &

H ° m
0.5

. 0.67 ‘ ‘ 0.85
0.2

- 0.6 ‘ 0.75

0 .

O 0.5 * O 03

0 0.1

x| IR * | °




Example: Fagin’s Algorithm

Objects appear in
every list:

1}

Objects seen so far:

{ 10N PACH

Object | Redness Object | Roundness Object | Area

(x,) (x,) (x3)

@ ' e M

ol m
U.o

. 0.67 ‘ ‘ 0.85
0.2

- 0.6 ‘ 0.75

0 .

O 0.5 * O 03

0 0.1

x| IR * | °




Example: Fagin’s Algorithm

H Objects appear in
every list:

(@)

Objects seen so far:

el - @)

Object | Redness Object | Roundness Object | Area

(x,) (x,) (x3)

LI I |

W el g
0.5

, 0.67 ‘ ‘ 0.85
0.2

- 0.6 ‘ 0.75

0 .

O 0.5 * O 03

0 0.1

remmrail * | °




Example: Fagin’s Algorithm

Objects appear in
every list:

@0 @

We got enough objects

Objects seen so far:

el - @)

Object | Redness Object | Roundness Object | Area

(x,) (x,) (x3)

LI I |

m | m
0.5

_. 0.67 ‘ ‘ 0.85

0.2 |

. 0.6 ’ 0.75

0 .

O 0.5 * O 03

0 0.1

remmrail * | °




Example: Fagin’s Algorithm

Objects appear in
every list:

@0 @

We got enough objects

Objects seen so far:

Ol - @)

Object | Redness Object | Roundness Object | Area

(x,) (x,) (x3)

LI I |

m | m
0.5

_. 0.67 ‘ ‘ 0.85

0.2 |

. 0.6 ’ 0.75

0 .

O 0.5 * O 03

0 0.1

x| IR * | °

For all these, calculate the score

and get the Top-k




The Threshold Algorithm

* Do Sorted access in parallel at all the lists untilt< g

— For each object R that has been seen at least once in any of
the list

* Do random accesses to get the attribute values of R from
the lists where the object has not been seen yet.

 Compute t(R) and update the list of top k objects (V) if
necessary.
— Compute 7 = t(x,,X,,...,.X,,) where x; is the grade of
the last seen object from list L; under sorted access.

— If tis less than the lowest aggregated grade (g) of the
top k set (Y) then halt.



Example : Threshold Algorithm

iterations
/ =sum and k=3
T=3 , Y = {"D } Object Re(dxn;ess Object Rou(l:(d;ess Object l-:)r(e)a
1 1 2 3
e e o B
- ! O ! - 0.95
0.5
‘ 0.67 ‘ ‘ 0.85
0.2
@@ e~
O 0.5 * 0 o | %
° 0.1
x| o ||l * | °

x-marked objects are the first to be seen of their kind and when seen they have been
accessed in the other databases randomly to compute their aggregate function.




Example : Threshold Algorithm

iterations

=sum and k=3

Object | Redness Object | Roundness Object | Area
(x,) (x,) (x3)
I 2
I
0.5
‘ 0.67 ‘ ‘ 0.85
0.2
. 0.6 ‘ 0.75
0 0.3
O 0.5 * O
0 0.1
il * |°

x-marked objects are the first to be seen of their kind and when seen they have been
accessed in the other databases randomly to compute their aggregate function.




Example : Threshold Algorithm

t=sum and k=3

iterations

r=2.02,Y={@. D, B }

g=1.95

Object | Redness Object | Roundness Object | Area
(x,) (x,) (x3)
I 2
I
0.5
‘ 0.67 ‘ . 0.85
0.2
. 0.6 ‘ 0.75
0 0.3
O 0.5 * O
0 0.1
% o || Il x| °

x-marked objects are the first to be seen of their kind and when seen they have been
accessed in the other databases randomly to compute their aggregate function.




Example : Threshold Algorithm

iterations

r=2.02,Y={@. D, B }

g=1.95

r=155,Y={@).©, . }

g=1.95

t=sum and k=3

Object | Redness Object | Roundness Object | Area
(x,) (x,) (x3)
I 2
I
0.5
‘ 0.67 ‘ . 0.85
0.2
. 0.6 ‘ 0.75
0 0.3
O 0.5 * O
0 0.1
% o || Il x| °

x-marked objects are the first to be seen of their kind and when seen they have been
accessed in the other databases randomly to compute their aggregate function.




When Sorted Access is Restricted

e J-approximation to the top k answers for the

aggregation function t is a collection of k objects (each
along with its grade) such that for each y among these
k objects and each z not among these k objects, 9
t(y)>=t(z)

* T 4:Assoon as at least k objects have been seen
whose grade is at least equal to threshold/ 9 then
halt.



Comparison of Fagin’s and Threshold Algorithm

* TA sees less objects than FA
* TA stops at least as early as FA
* When we have seen k objects in common in FA, their grades
are higher or equal than the threshold in TA.

* TA may perform more random accesses than FA
* In TA, (m-1) random accesses for each object
* In FA, Random accesses are done at the end, only for missing

grades

* TA requires only bounded buffer space (k)
* At the expense of more random seeks
* FA makes use of unbounded buffers



Restricting Sorted Access

A subset Z’ of the databases are not accessible
under sorted access.

TA is modified to handle such scenario.

T =t(x,,X,,...,X,,) Where x; is 1 for all
inaccessible database L.

All databases in Z’ are accessed only under
random access mode.



Restricting Sorted Access

t=3,Y={@}

g=2.75

Object | Redness Object | Roundness Object | Area
(x,) (x,) (x3)
I I .
H | ° . m-
0.5
‘ 0.67 ‘ ‘ 0.85
0.2
. 0.6 ‘ 0.75
0 0.3
O 0.5 * O
0 0.1
o ||l * | °

x-marked objects are the first to be seen of

their kind

t=sum and k=3

|

Inaccessible und

sorted access




Restricting Sorted Access

r3Y{'}

Object | Redness Object | Roundness Object | Area
(x,) (x,) (x3)
I I .
-
0.5
‘ 0.67 ‘ ‘ 0.85
0.2
. 0.6 ‘ 0.75
0 0.3
O 0.5 * O
0 0.1
o ||l * | °

x-marked objects are the first to be seen of

their kind

t=sum and k=3

|

Inaccessible und

sorted access




Restricting Sorted Access

r=2.17,Y={@.© . IB }

g=1.95

Object | Redness Object | Roundness Object | Area
(x,) (x,) (x3)
I I .
-
0.5
‘ 0.67 ‘ ‘ 0.85
0.2
. 0.6 ‘ 0.75
0 0.3
O 0.5 * O
0 0.1
o ||l * | °

x-marked objects are the first to be seen of

their kind

t=sum and k=3

|

Inaccessible und

sorted access




Restricting Sorted Access

r=2.17,Y={@.© . IB }

g=1.95

=18, Y={@.O ., I !

g=1.95

Object | Redness Object | Roundness Object | Area
(x,) (x,) (x3)
I I .
-
0.5
‘ 0.67 ‘ ‘ 0.85
0.2
. 0.6 ‘ 0.75
0 0.3
O 0.5 * O
0 0.1
o ||l * | °

x-marked objects are the first to be seen of

their kind

t=sum and k=3

|

Inaccessible und
sorted access




Restricting Random Access

e |f tisa monotone, W(R) is a lower bound on
t(R) computed by replacing unknown attribute
values with O in t.

* B(R)is an upper bound on t(R) computed by
replacing unknown attribute values with the
least value seen in the database.

* Here Y is the top k list that contains k objects
with the largest W values seen so far. Ties
broken by B values and then arbitrarily.



Example: Restricting Random Access

Y is the sorted top-k list

v=(@[ )

o) m-
X4 1 - - -
X, 1
X3 1
W 2 1 0
B 3 3 3

Object | Redness Object | Roundness Object | Area
(x,) (x,) (x3)
Il I &
H ° m
0.5
‘ 0.67 ‘ . 0.85
0.2
- 0.6 ‘ 0.75
0 0.3
O 0.5 * O
0 0.1
x| IR * | °




Example: Restricting Random Access

v=(@ . )

o m° @«
X, 1 - 1 - - -
X2 1 1
X3 1 0.95
W 2 1 1.95 1 0 0
B 2.95 3 2.95 295 | 295 | 2.95

Object | Redness Object | Roundness Object | Area
(x,) (x,) (x3)
@ ' e M
ol m
U.o
‘ 0.67 ‘ . 0.85
0.2
- 0.6 ‘ 0.75
0 0.3
O 0.5 * O
0 0.1
x| IR * | °

w( [ = 1+0+0.95 = 1.95




Example: Restricting Random Access

y={@, @ .

O

o m° @«
X, 1 - 1 - | 067 -
X2 1 1 0.5
X3 1 0.95 0.85
W 2 1 1.95 1 2.02 0
B 2.85 2.17 2.45 2521 2.02 | 2.02

\

Object | Redness Object | Roundness Object | Area
(x,) (x,) (x3)
LI I |
m - m
0.
’ 0.67 ‘ /5 ‘ 0.85
\\ =
ORIl IEOE
0 0.3
O 0.5\ * / O
0
il IHEE

/

B(.) =0.67+0.5+1 = 2.17




Example: Restricting Random Access

Yy={@ O B

ol m° @ «
Xl 1 0.6 1 - 0.67 -
X2 1 0.2 1 0.5
X3 0.75 1 0.95 0.85
W 2.75 1.8 1.95 1 2.02 0
B 2.75 1.8 2.05 2351 2.02 | 1.55

Object | Redness Object | Roundness | | Object | Area
(x1) (x,) (x3)
I I .
m |
0.5
_. 0.67 ‘ . 0.85
0.2
. 0.6 ‘ 0.75
0 0.3
O 0.5 * O
0 0.1
%o || I * | °




Example: Restricting Random Access

Object | Redness Object | Roundness Object | Area
(x,) (%) (x3)
1 1 1
-@.@ H e o '@
1 O ! 0.95
ol l° @ *
0.5
X 1 0.6 1 | 05 | 067 ‘ 0.67 ‘ 0.85
1
x 1 0.2 1 | o5 | o 0.2
2 . 0.6 ‘ 0.75
X 0.75 1 095 | 03 | 0.85
3
0 0.3
W 275 | 1.8 | 195 | 1.8 [202| O O 0.5 * O
0
B 275 | 1.8 | 195 | 1.8 | 202 08 * - - * 01
A A A

At this point the algorithm halts because all the objects not in Y have smaller B values
than the smallest W value in the Y which is 1.95 here.




Instance Optimality: Fagin’s
Algorithm

e Database with N objects, each with m attributes.
* Orderings of lists are independent

* FA finds top-k with middleware cost
O(N(ml)/mkl/m)

* FA = optimal with high probability in the worst
case for strict monotone aggregation functions




Instance Optimal : Threshold Algorithm

TA = instance optimal (always optimal) for every monotone

aggregation function, over every database (excluding wild
guesses)

= optimal in much stronger sense than Fagin’s Algorithm

If strict monotone aggregation function:

Optimality ratio = m + m (m-1)c/c, = best possible (m =#
attributes)

e If random acces not possible (c, = 0 ) = optimality ratio =m

e |f sorted access not possible (c, = 0) = optimality ratio =
infinite

— TA not instance optimal



* TA = instance optimal (always optimal) for
every strictly monotone aggregation function,
over every database (including wild guesses)
that satisfies the distinctness property

e Optimality ratio = cm? with

¢ = max {cp/C;,Cc/Cr}



(from Zhang2002 talk)

Algorithm Comparision

Algorithm | Assumption | Access | Termination | Termination | Buffer
Model | Worst Case | Expected Space
FA Monotone Sorted | n(m-1)/m +| Nm-i/mfd/m N
Random k/m
TA Monotone Sorted | Bounded by | Depends on K
Random FA distribution
NRA Monotone Sorted N Depends on N

distribution




