Problem Addressed

 Given a collection of objects, our goal is to find Top-k objects, whose scores are greater than the remaining objects.

A sample set of Databases

Before Moving On....

 Aggregate Function : Aggregate functions perform a calculation on a set of values and return a single value.

Eg: sum(), min()

 Monotone: In mathematics, a monotonic function is a function between ordered sets that preserves the given order.

i.e
$$t(x_1,...,x_m) \le t(x'_1,...,x'_m)$$
 if $x_i \le x'_i$ for every I
Eg:

Before Moving on

• Strictly Monotone:

 $t(x_1,...,x_m) < t(x'_1,...,x'_m)$ if $x_i < x'_i$ for every i

• Strict Monotone :

 $t(x_1,...,x_m) = 1$ precisely when $x_i = 1$ for every i

Before Moving On

Before Moving On....

A = class of algorithms, $A \in A$ represents an algorithm

D = legal inputs to algorithms (databases), $D \in \mathbf{D}$ represents a database

middleware cost = cost for processing data subsystems = $sc_s + rc_R$

Cost(A,D) = middleware cost when running algorithm A over database D

```
Algorithm B is instance optimal over A and D if :

B \in \mathbf{A} and \operatorname{Cost}(B,D) = O(\operatorname{Cost}(A,D)) \forall A \in \mathbf{A}, \forall D \in \mathbf{D}

Which means that:

\operatorname{Cost}(B,D) \leq c \cdot \operatorname{Cost}(A,D) + c', \quad A \in \mathbf{A}, \forall D \in \mathbf{D}

\uparrow

optimality ratio
```

Top-k Object Problem

- Naïve Algorithm
- Fagin's Algorithm
- Threshold Algorithm

Naïve Algorithm

- Basic Idea:
 - For for each object, use the aggregation function to get the score
 - \triangleright According to the scores, get the top k.
 - Since the time complexity is linear, it is not efficient for large database.

Questions

- Do we need to count the score for every object in the database?
- Can we SAFELY ignore some objects whose scores are lower than what we already have?

Fagin's Algorithm

- Do Sorted access in parallel at all the lists
- Stop when we have k objects which appear in all the lists
- Calculate score value of all the objects
- Compute Top-k objects

- Objects appear in every list:
 - { }

Objects seen so far:

k = 3

- Objects appear in every list:
 - { }

2

Objects seen so far:

k = 3

k = 3

Object

 \bigstar

Area

 (\mathbf{x}_3)

1

0.95

0.85

0.75

0.3

0.1

For all these, calculate the score and get the Top-k

The Threshold Algorithm

- Do Sorted access in parallel at all the lists until $\tau < g$
 - For each object R that has been seen at least once in any of the list
 - Do random accesses to get the attribute values of *R* from the lists where the object has not been seen yet.
 - Compute t(R) and update the list of top k objects (Y) if necessary.
 - Compute $\tau = t(\underline{x}_1, \underline{x}_2, ..., \underline{x}_m)$ where x_i is the grade of the last seen object from list L_i under sorted access.
 - If τ is less than the lowest aggregated grade (g) of the top k set (Y) then halt.

iterations

 $\tau = 3$, Y = { , g = 1.8 t=sum and k=3

iterations

t=sum and k=3

iterations

t=sum and k=3

iterations

t=sum and k=3

When Sorted Access is Restricted

- θ-approximation to the top k answers for the aggregation function t is a collection of k objects (each along with its grade) such that for each y among these k objects and each z not among these k objects, θ t(y)>=t(z)
- T $_{\vartheta}$: As soon as at least k objects have been seen whose grade is at least equal to threshold/ ϑ then halt.

Comparison of Fagin's and Threshold Algorithm

- TA sees less objects than FA
 - TA stops at least as early as FA
 - When we have seen *k* objects in common in FA, their grades are higher or equal than the threshold in TA.
- TA may perform more random accesses than FA
 - In TA, (*m*-1) random accesses for each object
 - In FA, Random accesses are done at the end, <u>only for missing</u> grades
- TA requires only bounded buffer space (k)
 - At the expense of more random seeks
 - FA makes use of unbounded buffers

- A subset Z' of the databases are not accessible under sorted access.
- TA is modified to handle such scenario.
- $\tau = t(\underline{x}_1, \underline{x}_2, ..., \underline{x}_m)$ where x_i is 1 for all inaccessible database L_i .
- All databases in Z' are accessed only under random access mode.

x-marked objects are the first to be seen of their kind

x-marked objects are the first to be seen of their kind

x-marked objects are the first to be seen of their kind

sorted access

Restricting Random Access

- If t is a monotone, W(R) is a lower bound on t(R) computed by replacing unknown attribute values with 0 in t.
- *B(R)* is an upper bound on *t(R)* computed by replacing unknown attribute values with the least value seen in the database.
- Here Y is the top k list that contains k objects with the largest W values seen so far. Ties broken by B values and then arbitrarily.

Y is the sorted top-k list

Object	Redness (x ₁)	Object	Roundness (x ₂)	Object	Area (x ₃)
	1		1		1
	1		1		0.95
	0.67		0.5		0.85
	0.6		0.2		0.75
	0.5	*	0		0.3
*	0		0	*	0.1

$Y = \{ \bigcirc, \bigcirc, \frown \}$							
					\bigcirc	*	
x ₁	1	-	1	-	0.67	-	
x ₂	1	-	-	1	0.5	-	
X ₃	-	1	0.95	-	0.85	-	
W	2	1	1.95	1	2.02	0	
В	2.85	2.17	2.45	2.52	2.02	2.02	

	$Y = \{ \bigcirc, \bigcirc, \bigcirc \}$							
					0	\bigcirc	*	
	x ₁	1	0.6	1	-	0.67	-	
	x ₂	1	0.2	-	1	0.5	-	
	X ₃	0.75	1	0.95	-	0.85	-	
	W	2.75	1.8	1.95	1	2.02	0	
	В	2.75	1.8	2.05	2.35	2.02	1.55	

	Object	Redness (x ₁)	Object	Roundness (x ₂)	Object	Area (x ₃)
		1		1		1
		1		1		0.95
		0.67		0.5		0.85
\square				0.2		
		0.6				0.75
				0		
		0.5	*	0		0.3
				0		
	*	0			*	0.1

At this point the algorithm halts because all the objects not in Y have smaller B values than the smallest W value in the Y which is 1.95 here.

Instance Optimality: Fagin's Algorithm

- Database with N objects, each with m attributes.
- Orderings of lists are independent
- FA finds top-k with middleware cost O(N^{(m1)/m}k^{1/m})
- FA = <u>optimal</u> with <u>high probability</u> in the <u>worst</u> <u>case</u> for strict monotone aggregation functions

Instance Optimal : Threshold Algorithm

 TA = <u>instance optimal</u> (always optimal) for <u>every monotone</u> aggregation function, over every database <u>(excluding wild</u> <u>guesses)</u>

= optimal in much stronger sense than Fagin's Algorithm

- If strict monotone aggregation function:
 Optimality ratio = m + m (m-1)c_R/c_s = best possible (m = # attributes)
 - If random acces not possible ($c_r = 0$) \rightarrow optimality ratio = m
 - If sorted access not possible ($c_s = 0$) \rightarrow optimality ratio = infinite

 \rightarrow TA not instance optimal

 TA = <u>instance optimal</u> (always optimal) for every <u>strictly monotone</u> aggregation function, over every database <u>(including wild guesses)</u> that satisfies the distinctness property

• Optimality ratio = cm^2 with c = max {c_R/c_s,c_s/c_R}

Algorithm Comparision

(from Zhang2002 talk)

Algorithm	Assumption	Access Model	Termination Worst Case	Termination Expected	Buffer Space
FA	Monotone	Sorted Random	n(m-1)/m + k/m	№ ^{m-1/m} k ^{1/m}	N
TA	Monotone	Sorted Random	Bounded by FA	Depends on distribution	k
NRA	Monotone	Sorted	N	Depends on distribution	N