Problem Addressed

* Given a collection of objects, our goal is to
find Top-k objects, whose scores are greater
than the remaining objects.
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Before Moving On....

* Aggregate Function : Aggregate functions
perform a calculation on a set of values and
return a single value.

Eg: sum(), min()

* Monotone: In mathematics, a monotonic
function is a function between ordered sets

that preserves the given order.
i.e (Xq,...,.X,) S {(X'q,....X ) If X; <X, for every |



Before Moving on

 Strictly Monotone:



Before Moving On

Sequential access
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Before Moving On....

A = class of algorithms, A € A represents an algorithm

D = legal inputs to algorithms (databases), D € D represents a database
middleware cost = cost for processing data subsystems = scq + rcg

Cost(A,D ) = middleware cost when running algorithm A over database D

Algorithm B is instance optimal over A and D if :
B € A and Cost(B,D) = O(Cost(A,D))VAEA, VDED
Which means that:
Cost(B,D)<c.Cost(A,D)+c, AEA, v D €D

T

optimality ratio




Top-k Object Problem

* Naive Algorithm
* Fagin’s Algorithm
* Threshold Algorithm



Naive Algorithm

e Basic ldea:

» For for each object, use the aggregation function
to get the score

» According to the scores, get the top k.

»Since the time complexity is linear, it is not
efficient for large database.



Questions

* Do we need to count the score for every
object in the database?

* Can we SAFELY ignore some objects whose
scores are lower than what we already have?



Fagin’s Algorithm

Do Sorted access in parallel at all the lists

Stop when we have k objects which appear in
all the lists

Calculate score value of all the objects
Compute Top-k objects



Example: Fagin’s Algorithm
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Example: Fagin’s Algorithm
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Example: Fagin’s Algorithm
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For all these, calculate the score

and get the Top-k




The Threshold Algorithm

* Do Sorted access in parallel at all the lists untilt< g

— For each object R that has been seen at least once in any of
the list

* Do random accesses to get the attribute values of R from
the lists where the object has not been seen yet.

 Compute t(R) and update the list of top k objects (V) if
necessary.
— Compute 7 = t(x,,X,,...,.X,,) where x; is the grade of
the last seen object from list L; under sorted access.

— If tis less than the lowest aggregated grade (g) of the
top k set (Y) then halt.



Example : Threshold Algorithm
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/ =sum and k=3
T=3 , Y = {"D } Object Re(dxn;ess Object Rou(l:(d;ess Object l-:)r(e)a
1 1 2 3
e e o B
- ! O ! - 0.95
0.5
‘ 0.67 ‘ ‘ 0.85
0.2
@@ e~
O 0.5 * 0 o | %
° 0.1
x| o ||l * | °

x-marked objects are the first to be seen of their kind and when seen they have been
accessed in the other databases randomly to compute their aggregate function.




Example : Threshold Algorithm
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Example : Threshold Algorithm

t=sum and k=3
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Example : Threshold Algorithm

iterations
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When Sorted Access is Restricted

e J-approximation to the top k answers for the

aggregation function t is a collection of k objects (each
along with its grade) such that for each y among these
k objects and each z not among these k objects, 9
t(y)>=t(z)

* T 4:Assoon as at least k objects have been seen
whose grade is at least equal to threshold/ 9 then
halt.



Comparison of Fagin’s and Threshold Algorithm

* TA sees less objects than FA
* TA stops at least as early as FA
* When we have seen k objects in common in FA, their grades
are higher or equal than the threshold in TA.

* TA may perform more random accesses than FA
* In TA, (m-1) random accesses for each object
* In FA, Random accesses are done at the end, only for missing

grades

* TA requires only bounded buffer space (k)
* At the expense of more random seeks
* FA makes use of unbounded buffers



Restricting Sorted Access

A subset Z’ of the databases are not accessible
under sorted access.

TA is modified to handle such scenario.

T =t(x,,X,,...,X,,) Where x; is 1 for all
inaccessible database L.

All databases in Z’ are accessed only under
random access mode.



Restricting Sorted Access

t=3,Y={@}

g=2.75

Object | Redness Object | Roundness Object | Area
(x,) (x,) (x3)
I I .
H | ° . m-
0.5
‘ 0.67 ‘ ‘ 0.85
0.2
. 0.6 ‘ 0.75
0 0.3
O 0.5 * O
0 0.1
o ||l * | °

x-marked objects are the first to be seen of

their kind

t=sum and k=3

|

Inaccessible und

sorted access




Restricting Sorted Access
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Restricting Sorted Access
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Restricting Sorted Access
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Restricting Random Access

e |f tisa monotone, W(R) is a lower bound on
t(R) computed by replacing unknown attribute
values with O in t.

* B(R)is an upper bound on t(R) computed by
replacing unknown attribute values with the
least value seen in the database.

* Here Y is the top k list that contains k objects
with the largest W values seen so far. Ties
broken by B values and then arbitrarily.



Example: Restricting Random Access

Y is the sorted top-k list
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Example: Restricting Random Access
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w( [ = 1+0+0.95 = 1.95




Example: Restricting Random Access
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Example: Restricting Random Access
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Example: Restricting Random Access
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At this point the algorithm halts because all the objects not in Y have smaller B values
than the smallest W value in the Y which is 1.95 here.




Instance Optimality: Fagin’s
Algorithm

e Database with N objects, each with m attributes.
* Orderings of lists are independent

* FA finds top-k with middleware cost
O(N(ml)/mkl/m)

* FA = optimal with high probability in the worst
case for strict monotone aggregation functions




Instance Optimal : Threshold Algorithm

TA = instance optimal (always optimal) for every monotone

aggregation function, over every database (excluding wild
guesses)

= optimal in much stronger sense than Fagin’s Algorithm

If strict monotone aggregation function:

Optimality ratio = m + m (m-1)c/c, = best possible (m =#
attributes)

e If random acces not possible (c, = 0 ) = optimality ratio =m

e |f sorted access not possible (c, = 0) = optimality ratio =
infinite

— TA not instance optimal



* TA = instance optimal (always optimal) for
every strictly monotone aggregation function,
over every database (including wild guesses)
that satisfies the distinctness property

e Optimality ratio = cm? with

¢ = max {cp/C;,Cc/Cr}



(from Zhang2002 talk)

Algorithm Comparision

Algorithm | Assumption | Access | Termination | Termination | Buffer
Model | Worst Case | Expected Space
FA Monotone Sorted | n(m-1)/m +| Nm-i/mfd/m N
Random k/m
TA Monotone Sorted | Bounded by | Depends on K
Random FA distribution
NRA Monotone Sorted N Depends on N

distribution




