
Scalable Linear Algebra on a 
Relational Database System

Pavel Grechanuk

Authors: Shangyu Luo, Zakai J, Gao, Michael Gubanov, Luis L. 

Perez, and Christopher Jermaine



Introduction
● Machine learning and large scale statistical processing in an 

important application domain and require linear algebra



Introduction
● Machine learning and large scale statistical processing in an 

important application domain and require linear algebra

● Many distributed linear algebra computations have closely 

corresponding distributed relational algebra computations



Introduction
● Machine learning and large scale statistical processing in an 

important application domain and require linear algebra

● Many distributed linear algebra computations have closely 

corresponding distributed relational algebra computations

● Given this the authors argue that it is natural to build a 

distributed linear algebra on top of a relational database



Why would we want to do this?
● Relational databases reap the benefits of decades of research 

targeted at building efficient systems



Why would we want to do this?
● Relational databases reap the benefits of decades of research 

targeted at building efficient systems

● Relational systems already have components such as a cost 

based query optimizer to aid in performing efficient 

computations



Why would we want to do this?
● Relational databases reap the benefits of decades of research 

targeted at building efficient systems

● Relational systems already have components such as a cost 

based query optimizer to aid in performing efficient 

computations

● Much of the work that goes into developing a scalable linear 

algebra system requires implementing functionality that is 

similar to a database query optimizer



What are the benefits?
● Most of the worlds data sits in relational databases -> if the databases could do 

linear algebra -> the data would be sitting in linear algebra systems meaning:



What are the benefits?
● Most of the worlds data sits in relational databases -> if the databases could do 

linear algebra -> the data would be sitting in linear algebra systems meaning:

1. It would eliminate the extract-transform-reload workflow that is expensive to do 

and requires transfering the data from one system to another



What are the benefits?
● Most of the worlds data sits in relational databases -> if the databases could do 

linear algebra -> the data would be sitting in linear algebra systems meaning:

1. It would eliminate the extract-transform-reload workflow that is expensive to do 

and requires transfering the data from one system to another

2. People would not have to adopt yet another data processing system to perform 

linear algebra



What are the benefits?
● Most of the worlds data sits in relational databases -> if the databases could do 

linear algebra -> the data would be sitting in linear algebra systems meaning:

1. It would eliminate the extract-transform-reload workflow that is expensive to do 

and requires transfering the data from one system to another

2. People would not have to adopt yet another data processing system to perform 

linear algebra

3. The design and implementation of high performance relational database systems 

is well understood, and if it is possible to adapt this system to perform linear 

algebra much of the past research is directly applicable



Typical Linear Algebra Computation - Divide Matrices



Typical Linear Algebra Computation - Partition Blocks



Typical Linear Algebra Computation - Shuffle Blocks



Typical Linear Algebra Computation - Local Multiply



Typical Linear Algebra Computation - Shuffle and Sum



How does this relate to relational algebra?
● Key observation is that this is just a relational algebra 

computation over the two blocks L and R



How does this relate to relational algebra?
● Shuffling the blocks is just a distributed join over the L(i,j) R(i,j) pairs!



How does this relate to relational algebra?
● The matrix multiplication is just a projection!



How does this relate to relational algebra?
● The shuffling and summation is a distributed grouping with aggregation



How does this relate to relational algebra?
● Key observation is that this is just a relational algebra 

computation over the two blocks L and R

● This shows that distributed linear algebra computations are 

analogous to distributed relational algebra computations!



How does this relate to relational algebra?
● Key observation is that this is just a relational algebra 

computation over the two blocks L and R

● This shows that distributed linear algebra computations are 

analogous to distributed relational algebra computations!

● Using a relational database for linear algebra means we do 

not have to reinvent the wheel as we can benefit from 

decades of research into query optimization



Question:

Can performant 

distributed linear 

algebra be 

implemented on top of 

a relational database?



Question:

Can performant 

distributed linear 

algebra be 

implemented on top of 

a relational database?

Claim:

We can make a very 

small set of changes to 

a relational system to 

make it suitable for 

scalable in database 

linear algebra



Contributions
● SQL Extensions:

a. New built in signed-scalar, vector and matrix data types

b. New aggregate functions for constructing the above data types

c. New linear algebra functions to operate on the data types - 22 functions like 

matrix multiplication, diagonal elements, dot product, etc.



Contributions
● SQL Extensions:

a. New built in signed-scalar, vector and matrix data types

b. New aggregate functions for constructing the above data types

c. New linear algebra functions to operate on the data types - 22 functions like 

matrix multiplication, diagonal elements, dot product, etc.

● Made the semantics of linear algebra operations visible to the 

query optimizer



Contributions
● SQL Extensions:

a. New built in signed-scalar, vector and matrix data types

b. New aggregate functions for constructing the above data types

c. New linear algebra functions to operate on the data types - 22 functions like 

matrix multiplication, diagonal elements, dot product, etc.

● Made the semantics of linear algebra operations visible to the 

query optimizer

● Compared performance of this approach to standard linear 

algebra packages



Performance Comparison
● SimSQL

○ An distributed relational system with the authors ideas implemented on it

○ Three types of programs for tests: tuple based, vector based, and block based

● Apache SystemML

○ Scalable linear algebra system for machine learning

● SciDB

○ A scalable array database system

● Apache Spark with mllib.linalg library

○ A linear algebra library ran on top of a dataflow platform



k Nearest Neighbor Classification - Review
● General idea is to find the k 

nearest neighbors using some 

distance metric

● Collect the predictions of the k 

nearest neighbors

● The class that has the largest 

number of predictions becomes 

the predicted class of the 

unknown instance



k Nearest Neighbor Classification - Review
● You could classify the 

type of an unknown 

flower using machine 

learning algorithms like 

k nearest neighbor

● If you had this data 

inside a relational 

database you would first 

have to take it out into 

this form



k Nearest Neighbor Classification - Review



Example - k Nearest Neighbor Classification

● Nested subquery and a view

● 4 joins and 2 groupings

● Difficult to understand the math



Example - k Nearest Neighbor Classification

● Nested subquery and a view

● 4 joins and 2 groupings

● Difficult to understand the math

● If the data is dense and the 

dimensionality of the data is large 

(many dimID for each pointID)

● Execution of this query will move 

a huge number of small tuples

● In classical iteration based model 

there is a fixed cost per tuple

● If you have 10,000 points with 

1,000 features each that is 10 

million tuples

● Can we do better?



Example - k Nearest Neighbor Classification

● Dramatically simpler

● Optimized for linear algebra

● Performance is improved 

significantly



Example - k Nearest Neighbor Classification

● Dramatically simpler

● Optimized for linear algebra

● Performance is improved 

significantly

● The vector and matrix 

representations can be 

manipulated as a single unit 

during query processing

● Significant performance increase!

● Simple addition of the vector and 

matrix data types allows for quick 

computation of what would be 

very complex queries





Gram Matrix Cost Comparison
● For the 1,000 dimensional data each 

tuple joins with the other 1,000 tuples 

for the same data point and then all of 

those need to be aggregated

● Since 5E5 data points are stored as 

5E8 tuples, this results in 5E11 tuples 

that need to be aggregated

● Tuple based linear algebra -> even a 

tiny cost per tuple can result in very 

long run times



Linear Regression Review
● Predict a numerical value using the 

features X

● Assumes relationship between the 

features X and predicted quantity y 

is linear

● 𝞫 is the coefficient vector that 

represents the relationship 

between each feature and target

● 𝞫 = (X

T

X)

-1

X

T

y







Conclusion
● Introduced vector and matrix data types to a relational 

database

● Provided vector/matrix construction/deconstruction, linear 

algebra, and other vector/matric related functions

● Brought the semantics of linear algebra operations to the 

query optimizer

● Significantly increased the performance of a standard 

relational database by leveraging the additions



My Review
● Show their results in a clear, concise, and convincing manner

● Do their results support their hypothesis?

○ Yes they significantly improved the performance of 

performing linear algebra on a relational database

● Their work can be improved further as this is just a proof of 

concept study



Thank you!
Questions?


