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Bilased Data = Biased Models

“...an algorithm wrongly labelled
black people as future criminals
near\y twice as often as vvhltes

“To limit potential b|as avoid
prejudme in the tralnmgdata
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For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights

By STEVE LOHR AUG. 17, 2014

Technology revolutions come in measured,

sl sometimes foot-dragging steps. The lab science
and marketing enthusiasm tend to

Share underestimate the bottlenecks to progress that
must be overcome with hard work and practical

W Tweet engineering.

@ Save The field known as “big data” offers a

contemporary case study. The catchphrase
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Data Cleaning Is Expensive
})

[ 1] Data Analyst Effort [2] Crowdsourcing

( Mlzonmuﬁmk

[3] Computational Cost

[1] Krishnan, Sanjay, et al. "Towards reliable interactive data cleaning: a user survey and recommendations." HILDA@SIGMOD. 2016.

[2] Marcus, Adam, and Aditya Parameswaran. "Crowdsourced data management industry and academic perspectives." Foundations and
Trends in Databases 2015.

[3] Khayyat, Zuhair, et al. "Bigdansing: A system for big data cleansirfy." SIGMOD. 2015.



ActiveClean

* How do we most efficiently clean data for a given
machine learning task?
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Problem Statement

Given a convex loss minimization problem and a cleaning
function C() which can only be applied to k records.

Find the best estimate of the true model (where the full
dataset is hypothetically cleaned).



Convex Loss Minimization

« SVMs, Linear Regression, Logistic Regression

e (xi, yi)is alabeled tuple where x is a feature vector
and vy is a label.

 Find a parameter that minimize disagreement with
the true label.

N
0" = arg m@in Z o(x;,y;,0)
i=1
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Outline

e Motivation
- The Update Problem
e The Prioritization Problem

e Results
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l[dea 1. Sampling

Budget: k records to clean

Training

Goal: Train an accurate model

Dirty
Database
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Problem. Sampling Error

Estimation
Error

# Records Cleaned



|dea 2. Clean In Place

Training

Budget: k records to clean

Goal: Train an accurate model

Dirty
Database
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Problem. Simpson’s Paradox
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(¢) Mixed Dirty and Clean

Partial Data Cleaning Can Be Misleading
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Problem. Simpson’s Paradox

Estimation
Error

Dirty Model
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Active Clean

Model as incremental optimization
Training A

A

Clean

Sample
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INtultion

Training
Error

o Stochastic Gradient Descent.
AUTY 9 — . B[V (D))

* Make each step unbiased.
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INtuition

Estimation
Error

Active Clean

# Records Cleaned
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AnalysIs

For a batch size b and iterations 1, the ActiveClean stochastic gradient
descent updates converge with rate:

1
e
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For strongly-convex models:

1
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For L-Lipschitz loss (e.q., SVM):
L
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Outline

e Motivation
 The Update Problem
- The Prioritization Problem

e Results
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Sparsity of Errors

e Uniform random sampling is not efficient for sparse
errors.

* Rare errors can amplity

Mostly Clean , Clean
DB Sample

v
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Data Likely 1o Be Dirty

* |f most of the dataset is clean, random sampling
will result in wasted effort.

* Active Clean integrates with detection techniques

Learning
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Dirty B +
Database - e
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Data Valuable To The Moael
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 Some data points are more valuable to the model
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Non-Unitorm Sampling
 Stochastic Gradient Descent.
AUTY « 9l — ~ . B[V ()]
. Importance Sample: Expectations can be

calculated over different distributions with the same
support.

Pi X ||V¢(ZL’L, Yi, e(t)) ||
o 2.5X Improvement in experiments
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Outline

e Motivation
 The Update Problem
e The Prioritization Problem

- Results
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Experimental Setup

e Real datasets and real errors.

* Cleaned all of the errors up front, then simulated an
analyst cleaning incrementally.

* Measured test and training error w.r.t true model
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Dollars For Docs

.~ 1 * 250,000 medical contribution
»  records

 Manually labeled as
suspicious or not

* Entity resolution errors Iin
company and drug names
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Dollars For Docs
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Yanhoo Movies

* 900,000 Records of Plot Descriptions with Genres

e Classify Comedy vs. Horror

Bloodrage (1979) A psychotic killer stalks the
streets of New York City. Comedy

[inon] —> |EEER
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Model Error %
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Conclusion

 Machine Learning can be sensitive to dirty data
when errors are systematic and unmodeled.

* Data cleaning is expensive so there is a question of
how best to apply data cleaning for ML problems.

 Many open questions in future work.

sampleclean.org
sanjay@eecs.berkeley.edu
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