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Large Datasets, 
Sophisticated Models
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“…an algorithm wrongly labelled 
black people as future criminals 
nearly twice as often as whites”

“To limit potential bias…avoid 
prejudice in the training data.”

Biased Data = Biased Models
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Data Cleaning Is Expensive

[1] Data Analyst Effort [2] Crowdsourcing

[1] Krishnan, Sanjay, et al. "Towards reliable interactive data cleaning: a user survey and recommendations." HILDA@SIGMOD. 2016. 
[2] Marcus, Adam, and Aditya Parameswaran. "Crowdsourced data management industry and academic perspectives." Foundations and 
Trends in Databases 2015. 
[3] Khayyat, Zuhair, et al. "Bigdansing: A system for big data cleansing." SIGMOD. 2015.

[3] Computational Cost
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ActiveClean
• How do we most efficiently clean data for a given 

machine learning task?
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Problem Statement
Given a convex loss minimization problem and a cleaning 
function C() which can only be applied to k records.

Find the best estimate of the true model (where the full 
dataset is hypothetically cleaned).
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Convex Loss Minimization
• SVMs, Linear Regression, Logistic Regression 

• (xi, yi) is a labeled tuple where x is a feature vector 
and y is a label. 

• Find a parameter that minimize disagreement with 
the true label.
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Outline
• Motivation 

• The Update Problem

• The Prioritization Problem 

• Results
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Idea 1. Sampling
Budget: k records to clean 

Goal: Train an accurate model
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Problem. Sampling Error
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Idea 2. Clean In Place
Budget: k records to clean 

Goal: Train an accurate model

Sample'

Training

Dirty&&
Database&

Dirty&&
Database&

13



Problem. Simpson’s Paradox

Partial Data Cleaning Can Be Misleading
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Problem. Simpson’s Paradox
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Intuition

• Stochastic Gradient Descent. 

• Make each step unbiased.
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Intuition
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Analysis
For a batch size b and iterations T, the ActiveClean stochastic gradient 
descent updates converge with rate:  

For strongly-convex models: 

For L-Lipschitz loss (e.g., SVM):
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Sparsity of Errors
• Uniform random sampling is not efficient for sparse 

errors. 

• Rare errors can amplify

Dirty&&
Database&

Mostly Clean  
DB

Clean&
Sample&

21



Data Likely To Be Dirty
• If most of the dataset is clean, random sampling 

will result in wasted effort. 

• Active Clean integrates with detection techniques
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∃ σ ∈ Σ : σ(r) = True
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Data Valuable To The Model

• Some data points are more valuable to the model
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Non-Uniform Sampling
• Stochastic Gradient Descent. 

• Importance Sample: Expectations can be 
calculated over different distributions with the same 
support. 

• 2.5x improvement in experiments
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Experimental Setup
• Real datasets and real errors. 

• Cleaned all of the errors up front, then simulated an 
analyst cleaning incrementally. 

• Measured test and training error w.r.t true model
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Dollars For Docs
• 250,000 medical contribution 

records  

• Manually labeled as 
suspicious or not 

• Entity resolution errors in 
company and drug names

27



Dollars For Docs
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Yahoo Movies
• 900,000 Records of Plot Descriptions with Genres 

• Classify Comedy vs. Horror

Bloodrage (1979) A psychotic killer stalks the 
streets of New York City. Comedy
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Yahoo Movies
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Conclusion
• Machine Learning can be sensitive to dirty data 

when errors are systematic and unmodeled. 

• Data cleaning is expensive so there is a question of 
how best to apply data cleaning for ML problems. 

• Many open questions in future work.
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