ECE 353 Probability and Random Signals - Homework 3

Spring 2019
Instructor: Dr. Raviv Raich
School of Electrical Engineering and Computer Science
Oregon State Univeristy

Due: Apr. 23, 2019

Q1. An ID includes 10 digits selected uniformly random in range from integral number 0-9. Each number can be selected multiple times. What is the probability that none of the digits is $0,3,7$ if the first digit is not 0 ?

Solution 1

Define two events firstly:

- $A=$ none of the digit digits is $0,3,7$
- $B=$ the first digit is not 0

Then, the probability that none of the digit can be 0 or 3 or 7 if the first digit is not 0 can be calculated as:

$$
\begin{equation*}
P(A \mid B)=\frac{P(A B)}{P(B)}=\frac{P(A)}{P(B)}=\frac{7^{10} / 10^{10}}{9 * 10^{9} / 10^{10}}=\frac{7^{10}}{9 * 10^{9}} \tag{1}
\end{equation*}
$$

Q2. Suppose a language containing five letters: A, B, C, D, E, F.
(a) How many three-letter words can you form in this language?
(b) How many four-letter words can you form if each letter appears only once in each word?
(c) What is the probability that a three-letter word (with each letter appearing only once) contains E?

Solution 2

(a) Since each letter can take on any one of the 6 possible letters in the alphabet, the number of 3 letter words that can be formed is $6^{3}=216$.
(b) If we allow each letter to appear only once then we have 6 choices for the first letter and 5 choices for the second, 4 choices for the third letter and 3 choices for the last. Therefore, there are a total of $6 \times 5 \times 4 \times 3=360$ possible words.
(c) The denominator is the answer to (b) and the numerator should be $\binom{5}{2} \times 3 \times 2 \times 1$ where the first term is choosing 2 letters from the rest 5 and the rest terms denote the permutation of all the three letters (with E). So the result would be $\frac{\binom{5}{2} \times 3 \times 2 \times 1}{6 \times 5 \times 4}=\frac{1}{2}$

Q3. Consider a binary code with 6 bits (0 or 1) in each code word. An example of a code word is 010101. In each code word, a bit is a zero with probability 0.7 , independent of any other bit.
(a) What is the probability of the code word 000111 ?
(b) What is the probability that a codeword contains exactly three ones?

Solution 3

(a) Since the probability of a zero is 0.8 , we can express the probability of the code word 000111 as 2 occurrences of a 0 and three occurrences of a 1 . Therefore

$$
\begin{equation*}
P[000111]=(0.7)^{3}(0.3)^{3}=0.0093 \tag{2}
\end{equation*}
$$

(b) The probability that a code word has exactly three 1's is

$$
\begin{equation*}
P[\text { three } 1 \text { 's }]=\binom{6}{3}(0.7)^{3}(0.3)^{3}=0.1852 \tag{3}
\end{equation*}
$$

Q4. In a poker-like dice game, five fair 6-sided dice are rolled independently. Consider the following two events: 'four of a kind' - all but one of the dice show the same number (e.g., 46444) and 'a 6 -high straight flush' - the five dice outcome contains exactly one of each: $2,3,4,5$, and 6 (e.g., 45236)
(a) Determine the number of possible outcomes in this five dice roll.
(b) Determine the probability of 'four of a kind'.
(c) Determine the probability of 'a 6 -high straight flush'.

Solution 4

(a) For five dice roll, the number of possible outcomes is: 6^{5}
(b) For 'four of a kind', the number of outcomes is: $6 * 5 * 5=150$

$$
\begin{equation*}
P=\frac{150}{6^{5}}=\frac{150}{7776} \tag{4}
\end{equation*}
$$

(c) For the 'a 6 -high straight flush', the number of outcomes is $5!=120$

$$
\begin{equation*}
P=\frac{120}{6^{5}}=\frac{120}{7776} \tag{5}
\end{equation*}
$$

