ECE 353 : Probability and Random Signals
 Homework 6 Spring 2019

Due May 16, 2019

1. Suppose X is a uniform random variable on the interval $(0,1)$ and $Y=5 X+2$.
(a) Find the CDF of Y.
(b) Find the PDF of Y and sketch it.
2. Let X be a geometric random variable with parameter p and n be a nonnegative integer. For what value of n is $P(X=n)$ maximum? What is the probability that X is odd?
3. Let X be uniformly distributed on $(-\pi, \pi)$ and $Y=\cos (X)$. Find the PDF of Y.
4. Let X be a continuous random variable with cdf $F_{X}(x)$. Let $Y=F_{X}(x)$. Show that Y is a uniform random variable over $(0,1)$.

Homework 6 solution

Problem 1

a) As X is a uniform random variable, it's PDF is as follows.

$$
f_{X}(x)=1, \quad 0<x<1
$$

The CDF of X will be $F_{X}(x)=\left\{\begin{array}{l}0, \quad x \leq 0 \\ \int_{0}^{x} f_{X}(x) d x=\int_{0}^{x} d x=x, \quad 0<x<1, \quad . \\ 1, \quad x \geq 1 .\end{array}\right.$.
The CDF of Y is as follows.

$$
\begin{aligned}
F_{Y}(y) & =p(Y \leq y) \\
& =p(5 X+2 \leq y) \\
& =p\left(X \leq \frac{y-2}{5}\right) \\
& =F_{X}\left(\frac{y-2}{5}\right) \\
& = \begin{cases}0, & \frac{y-2}{5}<0 \Rightarrow y \leq 2 \\
\frac{y-2}{5}, \quad 0<\frac{y-2}{5}<1 \Rightarrow 2<y<7 \\
1, & \frac{y-2}{5} \geq 1 \Rightarrow y \geq 7\end{cases}
\end{aligned}
$$

b) We know that the PDF of Y is $f_{Y}(y)=\frac{d F_{Y}(y)}{d y}$. Therefore, from (1) we get

$$
f_{Y}(y)= \begin{cases}0, & y \leq 2 \\ \frac{1}{5}, & 2<y<7 \\ 1, & \frac{y-2}{5} \geq 1 \Rightarrow y \geq 7\end{cases}
$$

Problem 2

a) As X has a geometric distribution. We have

$$
\begin{equation*}
p(X=n)=(1-p)^{n-1} p \tag{1}
\end{equation*}
$$

Since $0 \leq p \leq 1$, we have $0 \leq 1-p \leq 1$. Then, we have

$$
(1-p)^{n-1} \leq 1, \quad \forall n \geq 1
$$

Equality holds only when $n=1$, and the maximum value of (1) will be as follows.

$$
p(x=n)=p
$$

b) If n is odd, we have $n=2 k+1$.

$$
\begin{aligned}
P(X \text { is odd })=\sum_{\mathrm{n} \text { is odd }} p(X=n) & =\sum_{k=0}^{\infty}(1-p)^{2 k+1-1} p \\
& =p \sum_{k=0}^{\infty}\left\{(1-p)^{2}\right\}^{k} \\
& =p\left(\frac{1}{1-(1-p)^{2}}\right) \\
& =p\left(\frac{1}{2 p-p^{2}}\right) \\
& =\frac{1}{2-p}
\end{aligned}
$$

Problem 3

As X has uniform distribution between $(-\pi, \pi)$,

$$
f_{X}(x)= \begin{cases}\frac{1}{2 \pi}, & -\pi<x<\pi \\ 0, & \text { o.w }\end{cases}
$$

We know $f_{Y}(y)=\sum_{i} f_{X}\left(g_{i}^{-1}(y)\right)\left|\frac{d g_{i}^{-1}(y)}{d y}\right|$

$$
\begin{aligned}
f_{Y}(y) & =\sum_{i} f_{X}\left(g_{i}^{-1}(y)\right)\left|\frac{d g_{i}^{-1}(y)}{d y}\right|, \quad|y|<1 \\
& =\sum_{i} f_{X}\left(\cos ^{-1}(y)\right)\left|\frac{d \cos ^{-1}(y)}{d y}\right|+\sum_{i} f_{X}\left(\pi-\cos ^{-1}(y)\right)\left|\frac{d\left(\pi-\cos ^{-1}(y)\right)}{d y}\right|, \quad|y|<1 \\
& =\frac{1}{2 \pi} \frac{1}{\sqrt{1-y^{2}}}+\frac{1}{2 \pi} \frac{1}{\sqrt{1-y^{2}}} \\
& = \begin{cases}\frac{1}{\pi} \frac{1}{\sqrt{1-y^{2}}}, & |y|<1 \\
0 . & \text { o.w. }\end{cases}
\end{aligned}
$$

Problem 4

We know from the properties of a cdf that $y=F_{X}(x)$ is a monotonically nondecreasing function. Since $0 \leq F_{X}(x) \leq 1$ for all real x, y in the interval $(0,1)$.

$$
f_{Y}(y)=f_{X}(x) \frac{1}{\frac{d F_{X}(x)}{d x}}=\frac{f_{X}(x)}{f_{X}(x)}=1, \quad 0<y<1
$$

Hence, Y is a uniform random variable over $(0,1)$.

