ECE 353 Probability and Random Signals - Homework 7

Spring 2019
Instructor: Dr. Raviv Raich
School of Electrical Engineering and Computer Science Oregon State Univeristy

Due: May 21, 2019

Q1. X is a continuous uniform $(-5,5)$ random variable, i.e. $X \sim \mathrm{U}[-5,5]$
(a) Write the $\operatorname{PDF} f_{X}(X)$?
(b) Compute $E[X]$ and $E\left[X^{2}\right]$.
(c) Compute $E\left[e^{X}\right]$.

Solution

(a) The PDF of a continuous uniform $(5,5)$ random variable is

$$
f_{X}(x)= \begin{cases}1 / 10 & -5 \leq x \leq 5 \\ 0, & \text { otherwise }\end{cases}
$$

(b) The expected value $E[X]$ is

$$
\int_{-5}^{5} \frac{x}{10} d x=\left.\frac{x^{2}}{20}\right|_{-5} ^{5}=0
$$

The expected value $E\left[X^{2}\right]$ is

$$
\int_{-5}^{5} \frac{x^{2}}{10} d x=\left.\frac{x^{3}}{30}\right|_{-5} ^{5}=\frac{25}{3}
$$

(c) The expected value of e^{X} is

$$
\int_{-5}^{5} \frac{e^{x}}{10} d x=\left.\frac{e^{x}}{10}\right|_{-5} ^{5}=\frac{e^{5}-e^{-5}}{10}=14.84
$$

Q2. Suppose that X, the inter arrival time between two packets from two different sources at a router, satisfies

$$
\begin{equation*}
P(x>t)=\alpha e^{-t}+\beta e^{-2 t}, t \geq 0 \tag{1}
\end{equation*}
$$

Where $\alpha+\beta=1$ and $\beta \geq 0$. Calculate the mean of X.

Solution

First we can calculate

$$
\begin{equation*}
F_{X}(t)=1-P(x>t)=1-\left(\alpha e^{-t}+\beta e^{-2 t}\right), t \geq 0 \tag{2}
\end{equation*}
$$

we have

$$
\begin{equation*}
f_{x}(t)=\frac{\mathrm{d} F_{X}(t)}{\mathrm{d} t}=\alpha e^{-t}+2 \beta e^{-2 t} \tag{3}
\end{equation*}
$$

we can obtain

$$
\begin{array}{r}
E[X]=\int_{-\infty}^{\infty} t f_{X}(t) d t=\alpha \int_{0}^{\infty} t e^{-t} d t+2 \beta \int_{0}^{\infty} t e^{-2 t} d t \\
=\alpha \int_{0}^{\infty} t e^{-t} d t+2 \beta \int_{0}^{\infty} \frac{s}{4} e^{-s} d s=\alpha+\frac{\beta}{2} \tag{5}
\end{array}
$$

(Note: $\left.\int_{0}^{\infty} t^{n} e^{-t} d t=n!\right)$

Q3. The random variable X has CDF

$$
F_{X}(x)= \begin{cases}0, & x<-3 \\ 0.4, & -3 \leq x<5 \\ 0.8, & 5 \leq x<7 \\ 1, & x \geq 7 .\end{cases}
$$

Let $B=\{X>0\}$, find $P_{X \mid B}(x), E[X \mid B]$ and $\operatorname{Var}[X \mid B]$?

Solution

The PMF of X is:

$$
P_{X}(x)= \begin{cases}0.4, & x=-3 \\ 0.4, & x=5 \\ 0.2, & x=7 \\ 0, & \text { otherwise }\end{cases}
$$

The event $B=\{X>0\}$ has probability $P[B]=P_{X}(5)+P_{X}(7)=0.6$, so the conditional PMF of X given B is:

$$
P_{X \mid B}(x)=\left\{\begin{array}{ll}
\frac{P_{X}(x)}{P[B]}, & x \in B \\
0, & \text { otherwise }
\end{array}= \begin{cases}2 / 3, & x=5 \\
1 / 3, & x=7 \\
0, & \text { otherwise }\end{cases}\right.
$$

The conditional first and second moments of X are

$$
\begin{gather*}
E[X \mid B]=\sum_{x} x P_{X \mid B}(x)=5 \times(2 / 3)+7 \times(1 / 3)=17 / 3 \tag{6}\\
E\left[X^{2} \mid B\right]=\sum_{x} x^{2} P_{X \mid B}(x)=5^{2} \times(2 / 3)+7^{2} \times(1 / 3)=33 \tag{7}
\end{gather*}
$$

The conditional variance of X is

$$
\begin{equation*}
\operatorname{Var}[X \mid B]=E\left[X^{2} \mid B\right]-(E[X \mid B])^{2}=33-(17 / 3)^{2}=8 / 9 \tag{8}
\end{equation*}
$$

Q4 $X \sim \mathrm{U}[0,1]$ and $Y=-\log (X)$.
(a) Find the $f_{Y}(y)$.
(b) Compute $E[Y]$.
(c) Compute $E\left[Y^{2}\right]$.
(Hint: $\int_{0}^{\infty} t^{n} e^{-t} d t=n!$)

Solution

(a) From $Y=-\log (X)$, we can get $g^{-1}(y)=e^{-Y}$.

$$
f_{Y}(y)= \begin{cases}f_{X}\left(e^{-y}\right)\left|\frac{d e^{-y}}{d y}\right|, & y>0 \\ 0, & \text { otherwise }\end{cases}
$$

we obtain

$$
f_{Y}(y)= \begin{cases}e^{-y}, & y>0 \\ 0, & \text { otherwise }\end{cases}
$$

(b)

$$
\begin{array}{r}
E[Y]=E[-\log X]=-\int_{0}^{1} \log x d x \\
=-\left.(x \log x-x)\right|_{0} ^{1}=1 \tag{10}
\end{array}
$$

we can also have

$$
\begin{equation*}
E[Y]=\int_{0}^{\infty} y e^{-y} d y=1 \tag{11}
\end{equation*}
$$

(c)

$$
\begin{equation*}
E\left[Y^{2}\right]=\int_{0}^{\infty} y^{2} e^{-y} d y=2!=2 \tag{12}
\end{equation*}
$$

