ECE 353 Probability and Random Signals - Homework 1

Spring 2019

Instructor: Dr. Raviv Raich School of Electrical Engineering and Computer Science Oregon State University

Due: Apr. 9, 2019

Q1. An experiment consists of tossing two six sided dice. Assume all outcomes have equal probability

- (a) Find the sample space S.
- (b) Find the probability of event A that the sum of the dots on the dice equals 6.
- (c) Find the probability of event B that the sum of the dots on the dice is greater than 10.
- (d) Find the probability of event C that the sum of the dots on the dice is greater than 8 but less than 12.

Solution 1

(a) The sample space is

$$\begin{cases} (1,1) & (1,2) & (1,3) & (1,4) & (1,5) & (1,6) \\ (2,1) & (2,2) & (2,3) & (2,4) & (2,5) & (2,6) \\ (3,1) & (3,2) & (3,3) & (3,4) & (3,5) & (3,6) \\ (4,1) & (4,2) & (4,3) & (4,4) & (4,5) & (4,6) \\ (5,1) & (5,2) & (5,3) & (5,4) & (5,5) & (5,6) \\ (6,1) & (6,2) & (6,3) & (6,4) & (6,5) & (6,6) \\ \end{cases}$$
(1)

(2)

(b)

$$A = \{ (1,5) \quad (2,4) \quad (3,3) \quad (4,2) \quad (5,1) \}$$
(3)

(4)

 $P(A) = \frac{5}{36}$

(c)

$$B = \{ (5,6) \quad (6,5) \quad (6,6) \}$$
(5)

(6)

$$P(A) = \frac{3}{36} = \frac{1}{12}$$
(d)

$$C = \{(3,6) \quad (4,5) \quad (4,6) \quad (5,4) \quad (5,5) \quad (5,6) \quad (6,3) \quad (6,4) \quad (6,5)\}$$
(7)

$$P(D) = \frac{9}{36} = \frac{1}{4}$$

Q2. In an experiment, A, B, C and D are events with probabilities P[A] = 1/4, P[B] = 1/8, P[C] = 5/8, and P[D] = 3/8. Furthermore, A and B are disjoint, while C and D are independent.

- (a) Find $P[A \cap B]$, $P[A \cup B]$, $P[A \cap \overline{B}]$, and $P[A \cup \overline{B}]$.
- (b) Are A and B independent?
- (c) Find $P[C \cap D]$, $P[C \cap \overline{D}]$, and $P[\overline{C} \cap \overline{D}]$.
- (d) Are \overline{C} and \overline{D} independent?

Solution 2

(a) Since A and B are disjoint, P[A ∩ B] = 0.
P[A ∪ B] = P[A] + P[B] - P[A ∩ B] = 3/8.
It is obvious that A ⊂ B so that A ∩ B = A. This implies P[A ∩ B] = P[A] = 1/4.
It also follows that P[A ∪ B] = P[B] = 1 - 1/8 = 7/8.

- (b) Events A and B are not independent since $P[A \cap B] \neq P[A]P[B]$.
- (c) Since C and D are independent,

 $P[C \cap D] = P[C]P[D] = 15/64.$

The next few items are a little trickier. We have $P[C \cap \overline{D}] = P[C] - P[C \cap D] = 5/8 - 15/64 = 25/64$.

It follows that $P[C \cup \overline{D}] = P[C] + P[D] - P[C \cup \overline{D}] = 5/8 + (1 - 3/8) - 25/64 = 55/64.$ Using De Morgan's law, we have $P[\overline{C} \cap \overline{D}] = P[\overline{(C \cup D)}] = 1 - P[C \cup D] = 15/64.$ (d) Since $P[\overline{C} \cap \overline{D}] = P[\overline{C}]P[\overline{D}], \overline{C}$ and \overline{D} are independent.

Q3. Answer the following questions:

- (a) Prove that $P[A \cup B] = P[A] + P[B] P[A \cap B]$ for any A and B (not necessarily disjoint).
- (b) Prove that $P[A \cup B \cup C] = P[A] + P[B] + P[C] P[A \cap B] P[A \cap C] P[B \cap C] + P[A \cap B \cap C]$

Solution 3

(a) It can be easily checked that the sets A and $B \cap \overline{A}$ are a partition of $A \cup B$. Then, $(A \cup B) = A \cup (B \cap \overline{A})$ implies that $P[A \cup B] = P[A] + P[B \cap \overline{A}]$. Similarly, set B can be partitioned into sets $A \cap B$ and $B \cap \overline{A}$: $B = (A \cap B) \cup (B \cap \overline{A})$ meaning that $P[B] = P[A \cap B] + P[B \cap \overline{A}]$. Therefore,

 $P[A \cup B] = P[A] + P[B \cap A^{c}] = P[A] + P[B] - P[A \cap B].$

(b) In this question, we will be repeatedly using this axiom: if $X \cap Y = \emptyset$, then $P[X \cup Y] = P[X] + P[Y]$.

Figure 1: The union of three sets, cited from Wikipedia.

Let us consider the 7 disjoint subsets in Figure 1. The probability for each set is as follows:

1)
$$P[A] - P[A \cap C] - (P[A \cap B] - P[A \cap B \cap C])$$

- 2) $P[B] P[B \cap C] (P[A \cap B] P[A \cap B \cap C])$
- 3) $P[C] P[B \cap C] (P[A \cap C] P[A \cap B \cap C])$
- 4) $P[B \cap C] P[A \cap B \cap C]$
- 5) $P[A \cap B] P[A \cap B \cap C]$
- 6) $P[A \cap C] P[A \cap B \cap C]$

7) $P[A \cap B \cap C]$

By adding them together, the proof is completed.

Q4.

A number is selected uniformly at random from the set of integers $\{-100, -99, \ldots -1, 0, 1, \ldots, 99, 100\}$ What is the probability that it is divisible by 11, but neither by 3 nor by 5?

Solution 4 The question can be simplified to What is the probability that it is divisible by 11, but neither by 3 nor by 5? Define three events as:

 $A = \text{divisible by 3} \tag{8}$

$$B = \text{divisible by 5}$$
 (9)

C = divisible by 11 (10)

$$D =$$
divisible by 11, but not by 3 and 5 (11)

(12)

$$P(C) = \frac{2 \times \lfloor 100/1 \rfloor + 1}{201} = \frac{19}{201}$$
(13)

$$P(C \cap A) = \frac{2 \times \lfloor 100/33 \rfloor + 1}{201} = \frac{7}{201}$$
(14)

$$P(C \cap B) = \frac{2 \times \lfloor 100/55 \rfloor + 1}{201} = \frac{3}{201}$$
(15)

$$P(C \cap A \cap B) = \frac{2 \times \lfloor 100/165 \rfloor + 1}{201} = \frac{1}{201}$$
(16)

$$P(D) = P(C) - P(C \cap A) - P(C \cap B) + P(C \cap A \cap B) = \frac{10}{201}$$
(17)