ECE 353 Probability and Random Signals - Homework 1

Spring 2019
Instructor: Dr. Raviv Raich
School of Electrical Engineering and Computer Science Oregon State Univeristy

Due: Apr. 9, 2019

Q1. An experiment consists of tossing two six sided dice. Assume all outcomes have equal probability
(a) Find the sample space S.
(b) Find the probability of event A that the sum of the dots on the dice equals 6 .
(c) Find the probability of event B that the sum of the dots on the dice is greater than 10 .
(d) Find the probability of event C that the sum of the dots on the dice is greater than 8 but less than 12.

Solution 1

(a) The sample space is

$$
\left\{\begin{array}{llllll}
(1,1) & (1,2) & (1,3) & (1,4) & (1,5) & (1,6) \tag{1}\\
(2,1) & (2,2) & (2,3) & (2,4) & (2,5) & (2,6) \\
(3,1) & (3,2) & (3,3) & (3,4) & (3,5) & (3,6) \\
(4,1) & (4,2) & (4,3) & (4,4) & (4,5) & (4,6) \\
(5,1) & (5,2) & (5,3) & (5,4) & (5,5) & (5,6) \\
(6,1) & (6,2) & (6,3) & (6,4) & (6,5) & (6,6)
\end{array}\right\}
$$

(b)

$$
\begin{equation*}
A=\{(1,5) \quad(2,4) \quad(3,3) \quad(4,2) \quad(5,1)\} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
P(A)=\frac{5}{36} \tag{4}
\end{equation*}
$$

(c)

$$
\begin{equation*}
B=\{(5,6) \quad(6,5) \quad(6,6)\} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
P(A)=\frac{3}{36}=\frac{1}{12} \tag{6}
\end{equation*}
$$

(d)

$$
\left.\begin{array}{rl}
C & C=\left\{\begin{array}{llllllll}
(3,6) & (4,5) & (4,6) & (5,4) & (5,5) & (5,6) & (6,3) & (6,4)
\end{array}(6,5)\right.
\end{array}\right\}
$$

Q2. In an experiment, A, B, C and D are events with probabilities $P[A]=1 / 4, P[B]=1 / 8$, $P[C]=5 / 8$, and $P[D]=3 / 8$. Furthermore, A and B are disjoint, while C and D are independent.
(a) Find $P[A \cap B], P[A \cup B], P[A \cap \bar{B}]$, and $P[A \cup \bar{B}]$.
(b) Are A and B independent?
(c) Find $P[C \cap D], P[C \cap \bar{D}]$, and $P[\bar{C} \cap \bar{D}]$.
(d) Are \bar{C} and \bar{D} independent?

Solution 2

(a) Since A and B are disjoint, $P[A \cap B]=0$.
$P[A \cup B]=P[A]+P[B]-P[A \cap B]=3 / 8$.
It is obvious that $A \subset \bar{B}$ so that $A \cap \bar{B}=A$. This implies
$P[A \cap \bar{B}]=P[A]=1 / 4$.
It also follows that $P[A \cup \bar{B}]=P[\bar{B}]=1-1 / 8=7 / 8$.
(b) Events A and B are not independent since $P[A \cap B] \neq P[A] P[B]$.
(c) Since C and D are independent,
$P[C \cap D]=P[C] P[D]=15 / 64$.
The next few items are a little trickier. We have $P[C \cap \bar{D}]=P[C]-P[C \cap D]=5 / 8-15 / 64=$ 25/64.
It follows that
$P[C \cup \bar{D}]=P[C]+P[D]-P[C \cup \bar{D}]=5 / 8+(1-3 / 8)-25 / 64=55 / 64$.
Using De Morgan's law, we have

$$
P[\bar{C} \cap \bar{D}]=P[\overline{(C \cup D)}]=1-P[C \cup D]=15 / 64
$$

(d) Since $P[\bar{C} \cap \bar{D}]=P[\bar{C}] P[\bar{D}], \bar{C}$ and \bar{D} are independent.

Q3. Answer the following questions:
(a) Prove that $P[A \cup B]=P[A]+P[B]-P[A \cap B]$ for any A and B (not necessarily disjoint).
(b) Prove that $P[A \cup B \cup C]=P[A]+P[B]+P[C]-P[A \cap B]-P[A \cap C]-P[B \cap C]+P[A \cap B \cap C]$

Solution 3

(a) It can be easily checked that the sets A and $B \cap \bar{A}$ are a partition of $A \cup B$. Then, $(A \cup B)=$ $A \cup(B \cap \bar{A})$ implies that $P[A \cup B]=P[A]+P[B \cap \bar{A}]$. Similarly, set B can be partitioned into sets $A \cap B$ and $B \cap \bar{A}: B=(A \cap B) \cup(B \cap \bar{A})$ meaning that $P[B]=P[A \cap B]+P[B \cap \bar{A}]$. Therefore,

$$
P[A \cup B]=P[A]+P\left[B \cap A^{c}\right]=P[A]+P[B]-P[A \cap B] .
$$

(b) In this question, we will be repeatedly using this axiom: if $X \cap Y=\varnothing$, then $P[X \cup Y]=$ $P[X]+P[Y]$.

Figure 1: The union of three sets, cited from Wikipedia.
Let us consider the 7 disjoint subsets in Figure 1. The probability for each set is as follows:

1) $P[A]-P[A \cap C]-(P[A \cap B]-P[A \cap B \cap C])$
2) $P[B]-P[B \cap C]-(P[A \cap B]-P[A \cap B \cap C])$
3) $P[C]-P[B \cap C]-(P[A \cap C]-P[A \cap B \cap C])$
4) $P[B \cap C]-P[A \cap B \cap C]$
5) $P[A \cap B]-P[A \cap B \cap C]$
6) $P[A \cap C]-P[A \cap B \cap C]$
7) $P[A \cap B \cap C]$

By adding them together, the proof is completed.

Q4.
A number is selected uniformly at random from the set of integers $\{-100,-99, \ldots-1,0,1, \ldots, 99,100\}$ What is the probability that it is divisible by 11 , but neither by 3 nor by 5 ?

Solution 4 The question can be simplified to What is the probability that it is divisible by 11, but neither by 3 nor by 5 ? Define three events as:

$$
\begin{array}{r}
A=\text { divisible by } 3 \\
B=\text { divisible by } 5 \\
C=\text { divisible by } 11 \tag{10}
\end{array}
$$

$$
\begin{equation*}
D=\text { divisible by } 11 \text {, but not by } 3 \text { and } 5 \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
P(D)=P(C)-P(C \cap A)-P(C \cap B)+P(C \cap A \cap B)=\frac{10}{201} \tag{16}
\end{equation*}
$$

