ECE 353 : Probability and Random Signals Homework 4 Spring 2019

Due April 30, 2019

1. Random variable Y has a probability mass function (pmf) as

$$p_Y(y) = egin{cases} rac{c}{y}, & y = 1, 2 \ rac{c}{y^2}, & y = -1, -2 \ 0, & ext{otherwise} \end{cases}$$

- (a) Find the value of the constant c.
- (b) Calculate
 - i. P(Y = -2)
 - ii. P(Y < 1)
- 2. Assume the resistance of R is a random variable, uniformly distributed on the interval $[850\Omega, 1150\Omega]$.
 - (a) Find the PDF.
 - (b) Calculate $P(900\Omega \le 950\Omega)$?
- 3. In a restaurant, the time (in minutes) that a customer has to wait before s/he gets a table is specified by the following CDF:

$$F_X(x) = \begin{cases} \frac{x^2}{2}, & 0 \le x \le 1, \\ \frac{1}{2}, & 1 \le x \le 8, \\ \frac{x}{4} - \frac{3}{2}, & 8 \le x \le 10, \\ 1, & x > 10. \end{cases}$$

- (a) Compute and sketch the PDF $f_X(x)$.
- (b) Verify the area under the PDF is indeed unity.
- (c) What is the probability that the customer will have to wait at least 5 minutes?
- 4. Consider the function given by

$$F(x) = \begin{cases} 0, & x < 0 \\ x + \frac{1}{2}, & 0 \le x \le \frac{1}{2} \\ 1, & x \ge \frac{1}{2}. \end{cases}$$

- (a) Sketch F(x) and show that F(x) satisfies the properties of a cdf.
- (b) If X is the random variable whose cdf is given by F(x), find
 - i. P(X < 1/4),
 - ii. $P(0 < X \le 1/4)$.