ECE 353 : Probability and Random Signals Homework 4 Spring 2019

Due April 30, 2019

1. Random variable Y has a probability mass function (pmf) as

$$
p_{Y}(y)= \begin{cases}\frac{c}{y}, & y=1,2 \\ \frac{c}{y^{2}}, & y=-1,-2 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find the value of the constant c.
(b) Calculate
i. $P(Y=-2)$
ii. $P(Y<1)$
2. Assume the resistance of R is a random variable, uniformly distributed on the interval $[850 \Omega, 1150 \Omega]$.
(a) Find the PDF.
(b) Calculate $P(900 \Omega \leq 950 \Omega)$?
3. In a restaurant, the time (in minutes) that a customer has to wait before s / he gets a table is specified by the following CDF:

$$
F_{X}(x)=\left\{\begin{array}{l}
\frac{x^{2}}{2}, \quad 0 \leq x \leq 1 \\
\frac{1}{2}, \quad 1 \leq x \leq 8 \\
\frac{x}{4}-\frac{3}{2}, \quad 8 \leq x \leq 10 \\
1, \quad x \geq 10
\end{array}\right.
$$

(a) Compute and sketch the $\operatorname{PDF} f_{X}(x)$.
(b) Verify the area under the PDF is indeed unity.
(c) What is the probability that the customer will have to wait at least 5 minutes?
4. Consider the function given by

$$
F(x)=\left\{\begin{array}{l}
0, \quad x<0 \\
x+\frac{1}{2}, \quad 0 \leq x \leq \frac{1}{2} \\
1, \quad x \geq \frac{1}{2}
\end{array}\right.
$$

(a) Sketch $F(x)$ and show that $F(x)$ satisfies the properties of a cdf.
(b) If X is the random variable whose cdf is given by $F(x)$, find
i. $P(X \leq 1 / 4)$,
ii. $P(0<X \leq 1 / 4)$.

Homework 4 solution

Problem 1

a) Here, the range of $Y \mathcal{R}_{Y}=\{-2,-1,1,2\}$. By the definition of pmf we have $\sum_{y \in \mathcal{R}_{Y}} p_{Y}(Y=y)=1$.

$$
\begin{aligned}
& \sum_{y \in \mathcal{R}_{Y}} p_{Y}(Y=y)=1 \\
\Rightarrow & p_{Y}(Y=-2)+p_{Y}(Y=-1)+p_{Y}(Y=1)+p_{Y}(Y=2)=1 \\
\Rightarrow & \frac{c}{2}+\frac{c}{1}+\frac{c}{1}+\frac{c}{4}=1 \\
\Rightarrow & \frac{11 c}{4}=1 \\
\Rightarrow & c=\frac{4}{11}
\end{aligned}
$$

b) i) Then, we have

$$
p_{Y}(Y=-2)=\frac{\frac{4}{11}}{(-2)^{2}}=\frac{1}{11}
$$

ii) Probability of $Y<1$ is given by

$$
\begin{aligned}
p_{Y}(Y<1) & =p_{Y}(Y=-2)+p_{Y}(Y=-1) \\
& =\frac{\frac{4}{11}}{(-2)^{2}}+\frac{\frac{4}{11}}{(-1)^{2}}=\left(\frac{4}{11}\right)\left(\frac{5}{4}\right)=\frac{5}{11}
\end{aligned}
$$

Problem 2

a) According to Uniform distribution, if $X \sim U(a, b)$,

$$
f_{X}(u)=\frac{1}{b-a}, \text { for } a<u<b
$$

Then, the PDF of the resistance R is as follows.

$$
f_{R}(r)=\left\{\begin{array}{l}
\frac{1}{1150-850}=\frac{1}{300}, \text { for } 850 \leq u \leq 1150 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

b) Using the property of PDF we get

$$
P(900 \Omega \leq R \leq 950 \Omega)=\int_{900}^{950} \frac{1}{300} d r=\frac{50}{300}=\frac{1}{6}
$$

Problem 3

a) As $f_{X}(x)=\frac{d F_{X}(x)}{d x}$, we have

$$
f_{X}(x)= \begin{cases}x, & 0 \leq x \leq 1 \\ 0, & 1 \leq x \leq 8 \\ \frac{1}{4}, & 8 \leq x \leq 10 \\ 0, & \text { otherwise }\end{cases}
$$

b) We have

$$
P(0<X \leq 1 / 4)=F(1 / 4)-F(0)=3 / 4-1 / 2=1 / 4 .
$$

Figure 1: $f_{X}(x)$
c) The area under the PDF is as follows.

$$
\int_{-\infty}^{\infty} f_{X}(x) d x=\int_{0}^{1} x d x+\int_{8}^{10}\left(\frac{1}{4}\right) d x=\frac{1}{2}+\frac{1}{2}=1
$$

d) The probability that the customer will have to wait at least 5 minutes

$$
p(X \geq 5)=\int_{5}^{10} f_{X}(x) d x=\int_{8}^{10} \frac{1}{4} d x=\frac{1}{2}
$$

Problem 4

a) The sketch of the given function is as follows.

Figure 2: $F_{X}(x)$

From the figure, we can see that $0 \leq F(x) \leq 1$, and $F(x)$ is a non-decreasing function. Moreover, we have $F(-\infty)=0, F(\infty)=1$, and $F(x)$ is continuous on the right. Thus, $F(x)$ satisfies all the properties of a cdf.
b) i) We have

$$
P(X \leq 1 / 4)=F(1 / 4)=1 / 4+1 / 2=3 / 4
$$

ii) The probability is as follows.

$$
P(0<X \leq 1 / 4)=F(1 / 4)-F(0)=1 / 4+1 / 2-1 / 2=1 / 4 .
$$

