ECE 353 : Probability and Random Signals Homework 8 Spring 2019

Due May 30, 2019

1. Consider two random variables X and Y that follows the joint PDF:

$$
f_{X Y}(x, y)= \begin{cases}c, & x+y<5, \tag{1}\\ 0, & \text { otherwise }\end{cases}
$$

(a) Find the value of c.
(b) Prove that X and Y are not independent.
2. Let $\{X(t): t \geq 0\}$ be a Poisson process i.e., $P(X(t)=n)=\frac{\{\lambda t\}^{n}{ }^{\exp }(-\lambda t)}{n!}$. For $s=t / 5$, show that the conditional distribution of $X(s)$ given that $X(t)=n$ is binomial with parameters n and $p=1 / 5$, i.e.,

$$
P(X(t / 5)=m \mid X(t)=n)=\binom{n}{m}(1-p)^{n-m} p^{m} .
$$

3. The joint PDF of X, Y is as follows.

$$
f_{X Y}(x, y)=\left\{\begin{array}{l}
c e^{-x} e^{-y}, \quad x \geq 0, y \geq 0 . \tag{2}\\
0, \quad \text { otherwise } .
\end{array}\right.
$$

(a) Find the value of c.
(b) Find $f_{Y}(y)$.
(c) Find $f_{X \mid Y}(x \mid y)$.

Homework 8 solution

Problem 1

1. We know that the joint PDF should satisfy

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{x} f_{X Y}(x, y) d x d y=1 \\
\Rightarrow & \int_{0}^{5} \int_{0}^{5-y} c d x d y=1 \\
\Rightarrow & c \int_{0}^{5}(5-y) d y=1 \\
\Rightarrow & c\left[5 y-y^{2} / 2\right]_{0}^{5}=1 \\
\Rightarrow & c[25-25 / 2]=1 \\
\Rightarrow & 25 c / 2=1 \\
\Rightarrow & c=2 / 25 .
\end{aligned}
$$

2. By definition of the marginal $f_{X}(x): f_{X}(x)=\int_{-\infty}^{\infty} f_{x y}(x, y) d y$. Substituting $f_{x y}(x, y)$ into the integral, we obtain

$$
\begin{align*}
f_{X}(x) & =\int_{-\infty}^{\infty} 2 / 25 d y \tag{3}\\
& =2 / 25 \int_{0}^{5-x} d y=2 / 25(5-x), \quad 0 \leq x \leq 1 .
\end{align*}
$$

By definition of the marginal $f_{Y}(y): f_{Y}(y)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d x$. Substituting $f_{X Y}(x, y)$ into the integral, we obtain

$$
\begin{equation*}
f_{Y}(y)=\int_{-\infty}^{\infty} 2 / 25 d x=2 / 25 \int_{0}^{5-y} d x=2 / 25(5-y), \quad 0 \leq y \leq 1 \tag{4}
\end{equation*}
$$

Then, we have

$$
f_{X}(x) f_{Y}(y)=2 / 25(5-x) 2 / 25(5-y)=4 / 625(5-x)(5-y) \neq f_{X Y}(x, y)
$$

Therefore, X,Y are not independent.

Problem 2

$$
\begin{aligned}
P(X(s) & =m \mid X(t)=n)=P(X(t / 5)=m \mid X(t)=n) \\
& =\frac{P(X(t / 5)=m, X(t)=n)}{P(X(t)=n)} \\
& =\frac{P(X(t)=n \mid X(t / 5)=m) P(X(t / 5)=m))}{P(X(t)=n)} \\
& =\frac{P(X(t)-X(t / 5)=n-m) P(X(t / 5)=m))}{P(X(t)=n)} \\
& =\frac{P(X(t-t / 5)=n-m) P(X(t / 5)=m))}{P(X(t)=n)}
\end{aligned}
$$

As $X(t)$ has Poisson distribution,

$$
\begin{aligned}
P(X(s) & =m \mid X(t)=n) \\
& =\frac{P(X(t-t / 5)=n-m) P(X(t / 5)=m))}{P(X(t)=n)} \\
& =\frac{\frac{\{\lambda(t-t / 5)\}^{n-m} \exp (-\lambda(t-t / 5))}{n-m!} \frac{\{\lambda(t / 5)\}^{m} \exp (-\lambda(t / 5))}{m!}}{\frac{\{\lambda(t)\}^{n} \exp (-\lambda(t))}{n!}} \\
& =\frac{n!}{(n-m)!m!} \frac{\{\lambda(t-t / 5)\}^{n-m}\{\lambda(t / 5)\}^{m}}{\{\lambda(t)\}^{n}} \frac{\exp (-\lambda(t-t / 5)) \exp (-\lambda(t / 5))}{\exp (-\lambda(t))} \\
& =\binom{n}{m} \frac{t^{n-m}(1-1 / 5)^{n-m}\left(t^{m} 5^{-m}\right.}{t^{n}} \\
& =\binom{n}{m}(1-1 / 5)^{n-m}(1 / 5)^{m} \\
& =\binom{n}{m}(1-p)^{n-m} p^{m}, \quad p=1 / 5
\end{aligned}
$$

So the conditional distribution of $X(s)$ given that $X(t)=n$ is binomial with parameters n and $p=1 / 5$.

Problem 3

a)

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X Y}(x, y) d x d y=1 \\
\Rightarrow & \int_{0}^{\infty} \int_{0}^{x} c e^{-x} e^{-y} d y d x=1 \\
\Rightarrow & c \int_{0}^{\infty} e^{-x}\left\{\int_{0}^{\infty} e^{-y} d y\right\} d x=1 \\
\Rightarrow & c \int_{0}^{\infty} e^{-x}\left[1-e^{-\infty}\right] d x=1 \\
\Rightarrow & c \int_{0}^{\infty} e^{-x} d x=1 \\
\Rightarrow & c\left[-e^{-x}\right]_{0}^{\infty}=1 \\
\Rightarrow & c=1
\end{aligned}
$$

b) We know

$$
\begin{aligned}
f_{Y}(y) & =\int_{-\infty}^{\infty} f_{X Y}(x, y) d x \\
& =e^{-y} \int_{0}^{\infty} e^{-x} d x \\
& = \begin{cases}e^{-y}, & y \geq 0 \\
0, & \text { o.w. }\end{cases}
\end{aligned}
$$

c) By definition, the conditional PDF is as follows.

$$
\begin{equation*}
f_{X \mid Y}(x \mid y)=\frac{f_{X Y}(x, y)}{f_{Y}(y)} \tag{5}
\end{equation*}
$$

Substituting $f_{X Y}(x, y)$ and $f_{Y}(y)$ in (5), we get

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X Y}(x, y)}{f_{Y}(y)}=\frac{e^{-x} e^{-y}}{e^{-y}}=\left\{\begin{array}{l}
e^{-x}, \quad x \geq 0 \\
0, \quad \text { o.w }
\end{array}\right.
$$

