
1

CS 162 LAB #3 – Arrays, Structs, and File Separation

Each lab will begin with a brief demonstration by the TAs for the core concepts examined

in this lab. As such, this document will not serve to tell you everything the TAs will in the

demo. It is highly encouraged that you ask questions and take notes.

In order to get credit for the lab, you need to be checked off by the end of lab. You can

earn a maximum of 3 points for lab work completed outside of lab time, but you must

finish the lab before the next lab. For extenuating circumstances, contact your lab TAs

and the instructor.

This lab is worth 10 points total. Here’s the breakdown:
• Part 1: Arrays, Structs, Pointers (Individual work: 6 points)
• Part 2: Interface and Implementation files (Individual work: 2 points)
• Part 3: Makefile (Individual work: 2 points)

(6 pts) Part 1: Arrays, Structs, Pointers, etc.

In lecture we’ve learned how to create a 2D dynamic array of integers using functions. We’ve

also learned the concept of structs, which is a user-defined data type. In this part, we will be

combining these concepts together by writing a program that creates a dynamic 2D array of

multdiv_entry structs. The 2D array will be used to store and print the multiplication and

division tables for the values of row and column specified by the user. Here, instead of creating

two 2D arrays to store the multiplication and division tables, we will only create one 2D array.

Each element of the 2D array is the multidiv_entry type, which is a struct defined by the user.

See below for the memory layout. Note that the table will start at 1 instead of zero. This

prevents us from causing a divide by zero error in the division table! Specifically, follow these

steps to create the program.

Example: a 3X3 2D array of multdiv_entry structs:

1. Create a new file named multdiv.cpp. This is the file in which you will write your

program.

2. Set your program up to read the number of rows and columns from the user. No error

handling is needed here.

3. Write a struct like this one to store a single entry in both the multiplication table and the

division table.
struct multdiv_entry {

 int mult;

 float div;

};

mult = 1
div = 1

mult = 2
div= 0.5

mult = 3
div = 0.33

mult = 2
div = 2

mult = 4
div = 1

mult = 6
div = 0.67

mult = 3
div = 3

mult = 6
div = 1.5

mult = 9
div = 1

2

4. Write a program that uses row, col, and your struct to generate and then print the

multiplication and division tables. For example, if the user runs your program with row =

5, and col = 5, your program should create a 5 by 5 matrix of structs and assign the

multiplication values to the mult variable in the struct and the division of the indices to

the div variable in the struct. Then, print out both tables.

Your program needs to be well modularized with functions. Specifically, you should write and

use the following functions:

o multdiv_entry** create_table(int row, int col);

This function should allocate space for a row x col array of your struct and fill it with

the appropriate multiplication and division values. It should return the 2D array it
creates.

o void print_table(multdiv_entry** tables, int row, int col);

This function should take a 2D array as created by create_table() and its sizes and

print out the multiplication and division tables like above.

o void delete_table(multdiv_entry** tables, int row);

This function should delete all of the memory allocated to a 2D array created by

create_table(), given the array and its size as arguments. This function is

important. Your program should not have a memory leak.

At the end of the program, prompt the user if they want to see this information for a

different size matrix. Make sure you do not have a memory leak.

5. Now, compile your program:
g++ multdiv.cpp -o multdiv

once your program is compiled, test it with a few different values of row and col to make

sure it works.

Example Run (User inputs are highlighted):

Enter an integer greater than 0 for row: 5

Enter an integer greater than 0 for col: 5

Multiplication Table:

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5 10 15 20 25

Division Table:

1.00 0.50 0.33 0.25 0.20

2.00 1.00 0.67 0.50 0.40

3.00 1.50 1.00 0.75 0.60

4.00 2.00 1.33 1.00 0.80

5.00 2.50 1.67 1.25 1.00

3

Would you like to see a different size matrix (0-no, 1-

yes)? 0

(2 pts) Part 2: Interface and Implementation files

Since we now have function prototypes and a struct that is a global user-defined type, they

might be useful in other contexts. Let’s factor them into a more reusable form by separating the

struct and function prototypes in to a separate header file and the function definitions in to a

separate implementation file. Doing this will have other benefits, such as helping us keep

our code more organized and allowing us to speed up compilation (by compiling only

files that have changed since the last compilation). Follow these steps:

1. Create a multdiv.h interface file that will contain all the function and struct declaration

information we need:
struct multdiv_entry {

 int mult;

 float div;

};

multdiv_entry** create_table(int, int);

void print_table(multdiv_entry**, int, int);

void delete_table(multdiv_entry**, int);

Once you’ve created this header file, you can remove the definition of your struct from

your .cpp file. If you have prototypes separate from your function definitions in

the .cpp file, you can remove those too. Replace all those by including your new

header file:

#include "multdiv.h"

You should still be able to compile your program here as you did before:

g++ multdiv.cpp -o multdiv

2. Create a new implementation file named prog.cpp. Copy your main() function from

your original multdiv.cpp file, add it to this new file, and then remove it from

multdiv.cpp. You’ll need to include your multdiv.h header file in the new file, too.

Now, you’ll need to compile both files together to be able to run them:

g++ multdiv.cpp prog.cpp -o multdiv_run

After compiling, you should be able to run your new executable:

./multdiv_run

4

(2 pts) Part 3: Create a Makefile to compile your program

As our programs (and the number of source code files we use) grow, it can become painful to
continually type out long g++ commands into the terminal each time we want to compile our

code. Fortunately, there is a nice GNU/Unix utility called make, which allows us to write a file

called a makefile to specify how to compile our code. Once we have a makefile written,
compiling our code can be as simple as running the command make.

Let’s write a makefile for our program to simplify its compilation. Follow these steps:

1. Create a new file named Makefile. Add the following lines to this new file (note that

the indentation must be a tab character):

multdiv_run:

 g++ multdiv.cpp prog.cpp -o multdiv_run

2. Now, if you type the command make into your terminal, you should see your code be

compiled.

3. We can go further, factoring our compilation into different stages and specifying

dependencies for each compile step, which will allow the make utility to run only the

compilation steps it needs to based on which files have changed. We can also use

variables to make it easier to change some values in the makefile, such as the compiler

we want to use or the name of the executable file generated. Modify your Makefile to

look like this:

CC=g++

EXE_FILE=multdiv_run

all: $(EXE_FILE)

$(EXE_FILE): multdiv.o multdiv.h prog.cpp

 $(CC) multdiv.o prog.cpp -o $(EXE_FILE)

multdiv.o: multdiv.h multdiv.cpp

 $(CC) -c multdiv.cpp

4. Now if you run make again, you should notice your compilation happening in stages. By

default, make will run the first/topmost target in the makefile, in this case, the all

target. To build a specific target, simply add the target name afterwards, i.e.

 make <target>

We usually also add a makefile target for cleaning up our directory:

clean:

 rm -f *.o $(EXE_FILE)

You can run that makefile target by specifying it on the command line when you run

5

make, i.e. make clean.

Show your completed work and answers to the TAs for credit. You will not get points if
you do not get checked off!

Submit your work to TEACH for our records (Note: you will not get points if you don’t get
checked off with a TA!!!)

1. Transfer all files you’ve created in this lab (.h, .cpp, .txt, and makefile) from the ENGR
server to your local laptop.

2. Go to TEACH.
3. In the menu on the right side, go to Class Tools → Submit Assignment.
4. Select CS162 Lab3 from the list of assignments and click “SUBMIT NOW”
5. Select your files and click the Submit button.

https://teach.engr.oregonstate.edu/teach.php?type=want_auth

