
1

CS 162 LAB #5 – GDB & Practice Classes

In order to get credit for the lab, you need to be checked off by the end of lab. You can earn a

maximum of 3 points for lab work completed outside of lab time, but you must finish the lab

before the next lab and get checked off with your Instructor or TAs during their office hours. For

extenuating circumstances, contact your TAs and the instructor.

This lab is worth 10 points total. Here’s the breakdown:
• Part 1: 2 points: GDB Practice
• Part 2: Classes

o 5 points: Implement one class with constructors, accessors, and mutators
o 2 points: Design the class composition
o 1 point: create makefile

(2 pts) Part 1: GDB Practice

The purpose of a debugger such as GDB is to allow you to see what is going on "inside" the program
while it executes -- or what the program was doing at the moment it crashed.

GDB can do four main kinds of things (plus other things in support of these) to help you catch bugs in the
act:

• Start your program, specifying anything that might affect its behavior.
• Make your program stop on specified conditions.
• Examine what has happened, when your program has stopped.
• Change things in your program, so you can experiment with correcting the effects of one bug

and go on to learn about another.

GDB Manpage is a good source of information, i.e. man gdb

Step 0 (Optional): GDB Setup
If you prefer a more informational GDB interface (see below) with register values, source code, assembly
code, stack information, etc., you may run the following script:

2

In your home directory, type:
python /nfs/farm/classes/eecs/spring2021/cs161-001/public_html/gdb/set_up.py

Answer ‘y’ to the question:

Once setup successfully, you will have a .gdb folder and a .gdbinit file under your home directory,

and you can verify it with:
ls .gdb

cat .gdbinit

Step 1: Using GDB (TA Demo). Make sure you are able to follow every step in the demo
To start debugging your program, you need to compile it with debugging symbols, this is accomplished
with the -g flag:

g++ filename.cpp -g -o filename

Let’s start with a simple program that gets a line of text from the user, and prints it out backwards to the
screen: (You may get the file at https://classes.engr.oregonstate.edu/eecs/spring2023/cs162-
010/labs/debug.cpp using wget command)

#include <iostream>

#include <string.h>

using namespace std;

int main(){

 char input[50];

 int i = 0;

 cin >> input;

 for(i = strlen(input); i >= 0; i--){

 cout << input[i];

 }

https://classes.engr.oregonstate.edu/eecs/spring2023/cs162-010/labs/debug.cpp
https://classes.engr.oregonstate.edu/eecs/spring2023/cs162-010/labs/debug.cpp

3

 cout << endl;

 return 0;

}

compile and start the debugger with: (inputs are highlighted)
g++ debug.cpp -g -o debug

gdb ./debug (start another session which will run gdb)

GDB Execution debug.cpp

Some important commands to watch for during the demo (links to command documentation are
included):

1. The break Command:

break (b) – tells GDB to pause the execution of your program once it reaches a specified line in your

source code. This is called setting a breakpoint.
break [file_name]: [line_num]

break [function_name]

 Continuing with our example lets set up a break point at line 9, just before we declare int i = 0;

>>> break 9
Breakpoint 1 at 0x4008ed: file debug.cpp, line 9.
>>>

2. The run Command:

run (r) – starts your program from the beginning. This will run your program as you normally would

outside of the debugger, until it reaches a break point line. *Command line arguments to your
program can be specified with the run command.

run --args [args]

At this moment, you will have been returned to the gdb command prompt. (Using run again after

your program has been started, will ask to terminate the current execution and start over)

From our example:
>>> run

https://sourceware.org/gdb/onlinedocs/gdb/Set-Breaks.html#index-break-229
https://sourceware.org/gdb/onlinedocs/gdb/Starting.html#index-run-113

4

3. list (l) – prints out the lines of source code near the one currently being executed or near a

specified location.

4. The print Command:

print (p) – prints out the GDB value stored in a specified variable, etc.
print [var_name or function_name]

You may also print out the address of a specified variable.
print &[var_name]

Let’s look what the value of i is now:
 >> print i

 $1 = 0

5. The next(n) and step(s) Commands:

step (s) – tells GDB to execute the very next line of code when it’s paused at a breakpoint. If the

next line of code is inside a function call, the step command enters that function.

next (n) – a lot like the step command; tells GDB to execute the very next line of code when it’s

paused at a breakpoint. However, if the next line of code is inside a function call, the next command

runs that function without entering into it.

As you may notice, each statement may contain multiple assembly instructions. You may also run
those assembly instructions one by one by “next instruction” or “ni”

Now in our example, we will “next” to the beginning of the next instruction.

 >> next

 11 cin >> input;

What happened here? We weren't returned to the gdb prompt. Well, the program is inside cin,

waiting for us to input something.

Input string here, and press enter.

https://sourceware.org/gdb/onlinedocs/gdb/List.html#index-list-527
https://sourceware.org/gdb/onlinedocs/gdb/Data.html#index-print-586
https://sourceware.org/gdb/onlinedocs/gdb/Continuing-and-Stepping.html#index-step-339
https://sourceware.org/gdb/onlinedocs/gdb/Continuing-and-Stepping.html#index-next-341

5

6. The continue Command

continue (c) – tells GDB to resume normal execution of the program from the line of code where

it’s currently stopped until the next breakpoint, or the end of the program.

Let’s continue to the end of the program now:
 >>> continue

 Continuing.

 olleh

 [Inferior 1 (process 9059) exited normally]

 >>>

Here we've reached the end of our program, you can see that it printed in reverse "input", which is
what was fed to cin.

7. The display and watch Commands:

watch – tells GDB to pause whenever the value of a specified variable changes and to print out the

change in that variable’s value. This is called setting a watchpoint.
watch [var_name]

display will show a variable’s contents at each step of the way in your program. Let’s start over in

our example. Delete the breakpoint at line 9
 >>> del break 1

This deletes our first breakpoint at line 9. You can also clear all breakpoints w/ clear.

Now, let’s set a new breakpoint at line 14, the cout statement inside the for loop
 >>> break 14

Breakpoint 2 at 0x40094c: file debug.cpp, line 14.

Run the program again with the run command, and enter the input. When it returns to the gdb

command prompt, we will display input[i] and watch it through the for loop with each next or
breakpoint.

Breakpoint 2, main () at debug.cpp:14

14 cout << input[i];

>>> display input[i]

1: input[i] = 0 '\000'

>>> next

13 for(i=strlen(input);i>=0;i--) {

1: input[i] = 0 '\000'

>>> next

Breakpoint 2, main () at debug.cpp:14

14 cout << input[i];

1: input[i] = 111 'o'

>>> next

14 for(i=strlen(input);i>=0;i--) {

1: input[i] = 111 'o'

 >>> next

 Here we stepped through the loop, always looking at what input[i] was equal to.

 We can also watch a variable, which allows us to see the contents at any point when the memory
 changes.

https://sourceware.org/gdb/onlinedocs/gdb/Continuing-and-Stepping.html#index-continue-336
https://sourceware.org/gdb/onlinedocs/gdb/Set-Watchpoints.html#index-watch-262

6

>>> watch input

Watchpoint 2: input

>>> continue

Continuing.

Type q and hit enter to exit from GDB.

8. The backtrace (or bt) Command

backtrace (bt) – prints a backtrace, which is the sequence of function calls (called frames) that

brought the program to the current line of code being executed

Let’s modify our program just a little so that it will crash:
#include <iostream>

#include <string.h>

using namespace std;

https://sourceware.org/gdb/onlinedocs/gdb/Backtrace.html#index-bt-_0040r_007b_0028_0040code_007bbacktrace_007d_0029_007d-496

7

int main(){

 char *input = NULL;

 int i = 0;

 cin >> input;

 for(i = strlen(input); i >= 0; i--){

 cout << input[i];

 }

 cout << endl;

 return 0;

}

Here we've changed input to be a pointer to a char and set it to NULL to make sure it doesn’t point
anywhere until we set it. Recompile and run gdb on it again to see what happens when it crashes.
>>> r

Starting program: …

hello

We see at the bottom, two frames. #1 is the top most frame and shows where we crashed. Use the up
command to move up the stack.

Here we see line #11
11 cin >> input;

The line where we crashed.

9. Examine the memory (very useful)

x/100wx [address or register] – read memory
x – Examine
100 – 100 values
w – sized as word (w, 4 bytes) / b – 1 byte / g – 8 bytes
x – In hexadecimal (x) / d – decimal

Here are some more tutorials for gdb:

• http://www.cs.cmu.edu/~gilpin/tutorial/
• https://sourceware.org/gdb/current/onlinedocs/gdb/

http://www.cs.cmu.edu/~gilpin/tutorial/
https://sourceware.org/gdb/current/onlinedocs/gdb/

8

Part 2: Practice Classes

In Assignment 3, you need to create Coffee, Menu, Order, and Shop classes. Seems a lot, right? But

don’t worry, this lab serves to get you a head start on it!

(5 pt) Step 1: Create .h and .cpp files with constructors, accessors, and mutators for one class

Start working on the .h and .cpp files for one of the classes with the appropriate members (all being

private), mutator functions, accessor functions, and constructors. Add const keyword when

appropriate!

*Note: In real life, we create mutators and accessors only if we need them, but to give you more

practices, let’s create a mutator and accessor for each member variable of the class in this

assignment.

For example, here are some prototypes for the default constructor, mutators, accessors,

and some other useful functions for the Coffee class to get you started.

Coffee(); //Coffee constructor

void set_name (const string);

void set_small_cost(const float);

void set_medium_cost(const float);

void set_large_cost(const float);

string get_name() const;

float get_small_cost () const;

float get_medium_cost () const;

float get_large_cost () const;

void print_coffee() const; //print the coffee out

(2 pts) Step 2: Class Composition

Now, let’s figure out how classes interact with each other. On a sheet of paper, write down the

relationship between classes involved in this assignment (i.e. Shop “has-a” Menu). Besides, explain

how you are going to implement the “has-a” relationship.

(1 pts) Step 3: Create makefile

Create a Makefile that compiles all of your .cpp files and makes an executable.

Remember, you will not receive lab credit if you do not get checked off before leaving each

lab. Once you have a zero on a lab, then it cannot be changed because we have no way of

knowing if you were there or not.

9

Show your completed work and answers to the Instructor or the TAs for credit. You will not get
points if you do not get checked off!

Submit your work to TEACH for our records (Note: you will not get points if you don’t get checked
off with your instructor or a TA!!!)

1. Create a zip file that contains all files you’ve created in this lab:
2. Transfer the tar file from the ENGR server to your local laptop.
3. Go to TEACH.
4. In the menu on the right side, go to Class Tools → Submit Assignment.
5. Select CS162 Lab5 from the list of assignments and click “SUBMIT NOW”
6. Select your files and click the Submit button.

https://teach.engr.oregonstate.edu/teach.php?type=want_auth

