CS 444/544 OS ||
Lab Tutorial #1

Lab Setup, Tools, and Debugging

Acknowledgement: Slides drawn heavily from Yeongjin Jiang

How Do We Run Lab Sessions?

Tutorial Video (30 ~ 45 minutes)

Follow the instructions (slides/video)

Exercise + Q&A

Do your lab exercises and ask questions to TAs (on Discord)

Lab instruction website:
Canvas = Labs

Lab Instructions

Getting Started with x86 assembly <

If you are not already familiar with x86 assembly language, you will quickly become familiar with it during this course! The PC
Assembly Language Book is an excellent place to start. Hopefully, the book contains mixture of new and old material for you.

Warning: Unfortunately the examples in the book are written for the NASM assembler, whereas we will be using the GNU
assembler. NASM uses the so-called Intel syntax while GNU uses the AT&T syntax. While semantically equivalent, an assembly file
will differ quite a lot, at least superficially, depending on which syntax is used. Luckily the conversion between the two is pretty
simple, and is covered in Brennan's Guide to Inline Assembly.

Exercise 1. Familiarize yourself with the assembly language materials available on the cs444 reference page. You don't have to
read them now, but you'll almost certainly want to refer to some of this material when reading and writing x86 assembly.

We do recommend reading the section “The Syntax” in Brennan's Guide to Inline Assembly. It gives a good (and quite brief)
description of the AT&T assembly syntax we'll be using with the GNU assembler in JOS.

Certainly the definitive reference for x86 assembly language programming is Intel’s instruction set architecture reference, which
you can find on the cs444/544 reference page in two flavors: an HTML edition of the old 80386 Programmer’s Reference Manual,
which is much shorter and easier to navigate than more recent manuals but describes all of the x86 processor features that we
will make use of in cs444/544; and the full, latest and greatest |A-32 Intel Architecture Software Developer’s Manuals from Intel,
covering all the features of the most recent processors that we won't need in class but you may be interested in learning about. An
equivalent (and often friendlier) set of manuals is available from AMD. Save the Intel/AMD architecture manuals for later or use

TA Availability — Lab Q&A (Discord)

e Course Discord: https://discord.qga/BJJTaWBHE
e Office hours: See Canvas Main page

https://discord.gg/BJJTaWBHE

JOS Lab (labl-lab4, 70%)

Lab 1: Booting (10%)

Learn how an OS boots from BIOS to bootloader to the OS kernel

Lab 2: Virtual Memory (15%)

Learn how to manage physical/virtual memory space in an OS kernel

JOS Lab (1-4, 70%)

Lab 3: User Environment and System Call (20%)

Learn how user/kernel execution switch works and providing an isolated
virtual memory space to a user process

Lab 4: Preemptive Multitasking (25%)

Learn how user/kernel execution switch works and providing an isolated
virtual memory space to a user process

Extra Credit Labs

JOS Challenges (1% each from Lab 1,2,3, same due with the lab)

Solving a challenge would add +1% towards the entire course credits

O Note

Challenge (Extra credit 1%). Enhance the console to allow text to be printed in different colors. The traditional
way to do this is to make it interpret ANSI| escape sequences embedded in the text strings printed to the
console, but you may use any mechanism you like. There is plenty of information on the cs444/544 reference
page and elsewhere on the web on programming the VGA display hardware. If you're feeling really
adventurous, you could try switching the VGA hardware into a graphics mode and making the console draw
text onto the graphical frame buffer.

To get 1% of credit, please create acommand ‘show’ in the monitor and print a beautifule ASCII Art with 5 or
more colors when the command is typed on the console.

Once you finish this, please create afile .1ab1-extra atthe root of your repository directory (under jos/).
We will use that file as an indicator that you finished this extra-credit and then grade your work accordingly.

Today’s Tutorial

1. Lab environment setup
2. Commit your information on your own ‘jos’ repository
3. Run JOS with TMUX

ACTION: Setup the lab environment on OS servers

Connect to any of the following servers, with the —X flag to enable the X11
forwarding:

0S2.engr.oregonstate.edu

oldos2.engr.oregonstate.edu

oldosl.engr.oregonstate.edu

osl.engr.oregonstate.edu
l.e., ssh —X your_username@os2.engr.oregonstate.edu

RUN (please copy-and-paste):
$ /nfs/farm/classes/eecs/spring2024/cs444-001/csd444-setup.py
This will setup BASH, VIM, GDB, QEMU, and TMUX

Running Script

Type ‘y’ if you YWillsRie MM 052 ~ 166% /nfs/farm/classes/eecs/spring2021/cs444-001/cs444-setup.py
Cloning into '/nfs/stak/users/songyip/.cs444'. ..
remote: Enumerating objects: 19, done.

use the default Setup___ remote: Counting objects: 100% (19/19), done.
remote: Compressing objects: 100% (11/11), done.
remote: Total 432 (delta 7), reused 15 (delta 5), pack-reused 413
Receiving objects: 100% (432/432), 10.98 MiB | 0 bytes/s, done.
Resolving deltas: 100% (259/259), done.

Do you want to install peda to ~/.gdbinit (y/n) ?

Bo you want to install cs444 custom tmux configuration (y/n) 7
Bo you want to install .bashrc (y/n) ?

Bo you want to install .vimrc and vim plugins (y/n) ?

n

10

ACTION: Generate Public Key (Step 1)

If you already have your ssh public/private key on our servers, you can use the
same public key.

Otherwise, please create one by typing the following command:
$ ssh-keygen -t ecdsa

After that, please print your public key, and then copy the key to the clipboard
$ cat ~/.ssh/id _ecdsa.pub

ecdsa-sha2-nistp256 (THIS IS A SAMPLE PUBLIC KEY)
AAAAE2VjZHNhLXNoYTItbmlzdHAYNTYAAAATIbm1lzdHAYNTYAAABBBFRx1q/fIouV7KEf1GVEWL04/yIprKdtf9KYO

Hk8gAbtIxocFFsAgBuEzRg4EtjQEYnitroSm2F14mHy2cz27+ho= songyip@os2.engr.oregonstate.edu

11

Generate Public/Private Key (Step 2)

Use your favorite command text editor (i.e., vim) to open up ~/.ssh/authorized_keys.
If it does not exist, creat it.

Paste the public key you copied in the last step
ecdsa-sha2-nistp256 (THIS IS A SAMPLE PUBLIC KEY)

AAAAE2VjZHNhLXNoYTItbmlzdHAYNTYAAAAIbmlzdHAYNTYAAABBBFRx1q/fIouV7KEf1GVEwWL04/yIprKdt
f9KYOHk8gAbtIxocFFsAgBUEzRg4EtjQEYnitroSm2F14mHy2cz27+ho=

songyip@os2.engr.oregonstate.edu

You now need to set permissions on the file. Type

chmod 600 ~/.ssh/authorized keys

12

ACTION: https://github.com/
Register your account! (in case you don’'t have onel!!)

Visit the website and register an account;

13

https://github.com/

ACTION: Cloning jos-lab repository (step 1)

Logon to github classroom using your github account.
https://classroom.qgithub.com/classrooms

Accept the JOS assignment using the invitation link:
e https://classroom.qgithub.com/a/6lkngiou

Note: you need to link your email address to your github account for the first time

Clone the repository by running the following command on flip:
HTTPS: $ git clone https://github.com/OSU-0OS2/jos-labs-yourusername.git
SSH: $ git clone git@github.com:OSU-0S2/jos-labs-yourusername.git

14

https://classroom.github.com/classrooms
https://classroom.github.com/a/6lknqiou

ACTION: Cloning jos repository (step 2)

Note that this repo contains nothing but a setup script.

@B jos-labs-Rogersyp
forked from

Since GitHub Classroom does not allow private fork all branches, in order to keep
commit history of all branches in the starter code repo, you will have to run this
script!

15

ACTION: Cloning jos repository (step 3)

Make the script executable with the command
chmod +x run.sh

Then run it with the command
./run.sh

If it successfully runs, you will see..

Lastly, switch to labl branch by
git checkout labl

16

ACTION: Test your jos

Run the following commands:
$ cd jos-labs-yourusername

$ make gemu-nox

You must see something like following:

You may quit gemu by pressing:

Ctrl+A, X

0s2 ~/csd444/s21/0s2-1labl-Rogersyp 162% make gemu-nox
as kern/entry.S
cc kern/entrypgdir.c
cc kern/init.c
cc kern/console.c
cc kern/monitor.c
cc kern/printf.c
cc kern/kdebug.c
cc lib/printfmt.c
lib/readline.c
lib/string.c
obj/kern/kernel
: warning: section ' .bss' type changed to PROGBITS
boot/boot.S
-0s boot/main.c
boot/boot
block is 380 bytes (max 510)
obj/kern/kernel.img

"s/localhost:1234/1oca st:26220/" < .gdbinit.tmpl > .gdbinit

¥** Use Ctrl-a x to exit gemu

gemu-system-i386 -nographi drive file=obj/kern/kernel.img,index=
0,media=disk, format=raw -s al mon:stdio -gdb tcp::26220 -D gemu.
log
444544 decimal is XXX octal!
1 test_backtrace 5
test_backtrace
test_backtrace
test_backtrace
test_backtrace
test_backtrace
test_backtrace
test_backtrace
test_backtrace
test_backtrace
test_backtrace
test_backtrace
elcome to the JOS kernel monitor!
Type 'help' for a list of commands.
K> i

ACTION: Edit student.info and commit your change

Edit student.info via vim, emacs, nano, etc., e.g.,
$ vim student.info (press i to edit and ESC + :wqg to write and quit)
$ nano student.info (stores and quit via pressing Ctrl-X)

$ emacs student.info

OSU ID (xxx-yyy-zzz) : 933123456
ONID ID (e.g., songyip) : songyip
Tame : Yipeng Song

Type your information!

4 CS 444/544 ? + 444
Lab Class # + Lab 1

18

ACTION: Commit your change

Run:

$ git add student.info
(short cutl: add all files: git add —A)
$ git commit
.. type commit message, e.g., edit student.info
(short cut2: git commit —m “your commit message here”)
(short cut3: add file and commit in one command:
git commit —am “your commit message here”)

$ git push

19

LW) O = W N

~J "

O o

Commit result example

edit 5tudent.infn.
Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch main
Changes to be committed:
(use "git reset HEAD <file=>..." to unstage)

0s2 ~/csd444/s21/o0s2-1abl-Rogersyp 172% git push

modified: student.info warning: push.default is unset; its implicit value is changing in
Git 2.0 from 'matching' to 'simple'. To squelch this message
and maintain the current behavior after the default changes, use:

git config --global push.default matching

To squelch this message and adopt the new behavior now, use:

git config --global push.default simple

See 'git help config' and search for 'push.default' for further information.
(the 'simple' mode was introduced in Git 1.7.11. Use the similar mode
‘current' instead of 'simple' if you sometimes use older versions of Git)

Username for 'https://github.com’': Rogersyp

Password for 'https://Rogersyp@github.com':

Counting objects: 5, done.

Delta compression using up to 96 threads.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 298 bytes | O bytes/s, done.

Total 3 (delta 2), reused 0 (delta 0)

remote: Resolving deltas: 100% (2/2), completed with 2 local objects.

To https://github.com/0SU-CS444-S21/0s2-1abl-Rogersyp.git
f6e52cf..%9aeb4fa main -> main

20

How to Start Labs?

Setup lab environment first (we will do this today!)

Read Lab description online

https://classes.enqgr.oregonstate.edu/eecs/spring2024/cs444-001/labs/Labl.pdf

Finish all exercises, and run

$ make grade

21

https://classes.engr.oregonstate.edu/eecs/spring2024/cs444-001/labs/Lab1.pdf

Running GDB with JOS

Go to jos directory
Use the dual split-screen mode in tmux
Run make gemu-nox-gdb on the left side (must run a single instance of gemu..)

Port bind error could occur if you have another instance of gemu
running..

Run gdb on the right side (must be under jos directory)

Otherwise, your gdb will never attach to jos gemu..

22

Attaching remote gdb to gemu to debug JOS kernel..

L eft

0s2 ~/csdd44/s21/o0s2-1labl-Rogersyp 152% make gemu-nox-gdb

¥¥% Now run 'gdb’.

gemu-system-i386 -nographic -drive file=obj/kern/kernel.img,index=0,media=disk, format=raw
rial mon:stdio -gdb tcp::26220 -D gemu.log 5

Right

0s2 ~/cs444/s21/0s2-1labl-Rogersyp 155% gdb

-se

23

0s2 ~/cs444/s21/o0s2-1labl-Rogersyp 155% gdb

GNU gdb (GDB) Red Hat Enterprise Linux 7.6.1-120.el7

Copyright (C) 2013 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.
Resu t There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "x86_64-redhat-linux-gnu".

; bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

’ 1 + target remote alhost:26220
l-Eat S S;EBt a t)rEBEiF(F)()Ir]t Eit tr1€3 warning: A handler for the 0S ABI "GNU/Linux" is not built into this configuration
of GDB. Attempting to continue with the default i8086 settings.
address 0x7c00.

The target architecture is assumed to be 18086
[foeo: fffo] oxffffo: ljmp $0xf000,$0xe05b
0x0000fffO in 72?7 ()

b *Ox7c00 — Regiéée,—s

Then, continue the execution [="
add

via add

add

C (Mmeaning continue..) S

Stack -

—— Memory

—— EXxpressions

2~ symbol-file obj/kern/kernel
>>> b *0x7c00
Broakpoint 1 at 0A%7¢c00

>>>

You can start Exercise 3 of Lab 1!

— Output/messages

Use ‘si’ to follow the function call.. [ws TRt

Breakpoint 1, @x@0007c00 in 7?7 (O

—— Registers
0x0000aa55
000006120
0x00007 cO
2x00000000

—— Assembly

Ox00007c00 7 cli

cld
xor
mov
mov
mov
in

Source

Stack

from 0x00007c00

Memory
Expressions

22> I

0x00000000
0x00000000
[IF]

0x00000000

%ax , %ax
%ax ,%ds
%ax,%es
%ax,%ss
$0x64 ,%al

If you are curious about x86 assembly

X86 Assembly Guide: http://flint.cs.yale.edu/cs421/papers/x86-
asm/asm.html

Search instructions on Goole

0x00007ccb ? repnz insl (%dx),

repnz x86 Repeat String Operation Prefix
Opcode Mnemonic Description
All Videos News Shopping Im F3 6C REP INS m8, DX Input (E)CX bytes from port DX into ES:[(E)DI].
F3 6D REP INS ml6, DX Input (E)CX words from port DX into ES:[(E)DI].
F3 6D REP INS m32, DX Input (E)CX doublewords from port DX into ES:[(E)DI].

About 16,400 results (0.39 seconds)

REP/REPE/REPZ/REPNE/REPNZ: Repeat String Operation Prefix ...
https://c9x.me/x86/html/file_module_x86_id_279.html ~
x86 assembly tutorials, x86 opcode reference, programming, pastebin with syntax ... and STOS

instructions, and the REPE, REFNE, REPZ, and REPNZ prefixes ... 26

http://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html
http://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html

Grading Example

running JOS: make[1]: Warning: File “obj/.deps' has modification time 110 s in the future
make[1]: Warning: File “obj/.deps' has modification time 111 s in the future
make[1]: warning: Clock skew detected. Your build may be incomplete.

(0.9s)
printf:
backtrace count:
backtrace arguments:
backtrace symbols:
backtrace lines:

Score: 50/50

make: warning:

Clock skew detected. Your build may be incomplete.

Please ignore ‘Clock skew detected’ messages
27

Example of the correct output of Lab 1

gemu-system-1i386 -nographic -drive file=obj/kern/kernel.img,index=0,media=disk,format=raw -serial mon:stdio -gdb tcp::26078 -D gemu.log
444544 decimal is 1544200 octal!

entering
entering
entering
entering
entering
entering
Stack ba
ebp fO
kern

ebp fO
kern

ebp fO
kern

ebp 0O
kern

ebp 0O
kern

ebp 0O
kern

ebp 0O
kern

ebp 0O

test_backtrace
test_backtrace
test_backtrace
test_backtrace
test_backtrace
test_backtrace
cktrace:

10ff18 eip fOl

10ff38 eip fO1
10ff58 eip fO1
10ff78 eip fOl
10ff98 eip fO1
10ffb8 eip fO1

10ffd8 eip fOl
/init.c:43: i38

10fff8 eip f010003e args 00111021

oOFEFNWAWLM

00087 args 00000000
/init.c:19: test_backtrace+71
00069 args 00000000
/init.c:16: test_backtrace+4l
00069 args 00000001
/init.c:16: test_backtrace+4l
00069 args 00000002
/init.c:16: test_backtrace+4l
00069 args 00000003
/init.c:16: test_backtrace+4l
00069 args 00000004
/init.c:16: test_backtrace+41l
000ea args 00000005

6_init+77

kern/entry.S5:83: <unknown>+0

leaving
leaving
leaving
leaving
leaving
leaving
Welcome

Type ‘help' for a list of commands.

K>l

test_backtrace
test_backtrace
test_backtrace
test_backtrace
test_backtrace
test_backtrace
to the JOS kern

0
1
2
3
4

5
el monitor!

00000000

00000001

00000002

00000003

00000004

00000005

0006c880

00000000

00000000

fo10ff78

fol1effas

fo10ffbs

00000000

00000000

00000640

00000000

00000000
00000000
00000000
00000000
00000000
00010094
00000000
00000000

01009db

01009db

01009db

01009db

00000000

00010094

00000000

00000000

28

How to Submit Labs?

All lab submissions must be turn in via your lab repository on GitHub Classroom.
$ git add ... (add files to git repo)
$ git commit (commit your changes)

After finishing the lab:

$ git tag lab1-final
This completes the lab. Inthe jos directory, commit your changes with git commit , git tag labi-final,
git push ,and git push origin --tags tosubmityour code. Please do not forget to create and include the file

$ git push

.labl-extra in case if you finished extra-credit challenge.

$ git push origin --tags

29
This will push labl1-final to the repository...

How to Submit Labs?

Additionally, there is a check submission script to check if you have tagged and

submltted correctly!

[songyip@os2 (labl) $] 1s
blOS 256k bin

CODING efi-e1000.rom GNUmakefile gra

To run the script:
chmod +x check _submission.sh < optional if it needs executable permission

.Jcheck_submission.sh

If it is tagged and submitted correctly, you should see:

s0NgYy i 2 tlablb $] ./check_submission.sh
It looks like you've submitted successfully! Go to https://github.com/0SU-052/jos-1lab

s-Rogersyp/releases/tag/labl-final and make sure all your cc:de is there.

30

How to get help from TA?

e Get on the course Discord server
e Post your question on the each lab channel (JOS Labl ~ 4)
e Check TA availability, and then send a DM to a TA

o Please do not bug our TAs much during their out-of-hour for the TA job. They could help you,
but that’s all from their voluntary service. Please send many thanks to our TAs!

e How to code together with a TA?

o Use the command TA-HELP

31

ta-help

e Sharing a tmux session with your TA (virtual finger-to-finger meeting with TA)

0s2 ~ 172% ta-help

Copy the following string to TA: [ReusFEPEA2UEEL'RCHLEY:

Press enter to continue...§

e Copy the tmp string, and send that to your TA via Discord Direct Message
e Press ENTER (you will see a regular tmux session).

e TA can share your tmux session and you two can code together

32

JOS Lab Setup

Tools:
QEMU (Intel 32-bit x86 emulator)
GIT (Source Code Version Control System)
GDB (Debugger)
BASH, TMUX, VIM, etc.

We will use GIT to checkout all code and submit your lab progress!

33

Read more at...

GIT cheat sheet: https://www.qgit-tower.com/blog/qit-cheat-sheet

VIM cheat sheets: https://devhints.io/vim and https://vim.rtorr.com/

GDB cheat sheets: https://cs.brown.edu/courses/cs033/docs/quides/gdb.pdf

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

TMUX cheat sheet:;

https://qist.github.com/MohamedAlaa/2961058 (the prefix is ~ in CS444 settings)

34

https://www.git-tower.com/blog/git-cheat-sheet
https://devhints.io/vim
https://vim.rtorr.com/
https://cs.brown.edu/courses/cs033/docs/guides/gdb.pdf
https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf
https://gist.github.com/MohamedAlaa/2961058

	Slide 1: CS 444/544 OS II Lab Tutorial #1
	Slide 2: How Do We Run Lab Sessions?
	Slide 3: Lab Instructions
	Slide 4: TA Availability – Lab Q&A (Discord)
	Slide 5: JOS Lab (lab1-lab4, 70%)
	Slide 6: JOS Lab (1-4, 70%)
	Slide 7: Extra Credit Labs
	Slide 8: Today’s Tutorial
	Slide 9: ACTION: Setup the lab environment on OS servers
	Slide 10: Running Script
	Slide 11: ACTION: Generate Public Key (Step 1)
	Slide 12: Generate Public/Private Key (Step 2)
	Slide 13: ACTION: https://github.com/ Register your account! (in case you don’t have one!!)
	Slide 14: ACTION: Cloning jos-lab repository (step 1)
	Slide 15: ACTION: Cloning jos repository (step 2)
	Slide 16: ACTION: Cloning jos repository (step 3)
	Slide 17: ACTION: Test your jos
	Slide 18: ACTION: Edit student.info and commit your change
	Slide 19: ACTION: Commit your change
	Slide 20: Commit result example
	Slide 21: How to Start Labs?
	Slide 22: Running GDB with JOS
	Slide 23: Attaching remote gdb to qemu to debug JOS kernel..
	Slide 24: Result
	Slide 25: You can start Exercise 3 of Lab 1!
	Slide 26: If you are curious about x86 assembly
	Slide 27: Grading Example
	Slide 28: Example of the correct output of Lab 1
	Slide 29: How to Submit Labs?
	Slide 30: How to Submit Labs?
	Slide 31: How to get help from TA?
	Slide 32: ta-help
	Slide 33: JOS Lab Setup
	Slide 34: Read more at...

