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Lab 2: Memory Management 

• Handed out: Monday, April 15, 2024 

• Due: 11:59 pm, Monday April 29, 2024 

Introduction 

In this lab, you will write the memory management code for your operating system. Memory 

management has two components. 

The first component is a physical memory allocator for the kernel, so that the kernel can allocate 

memory and later free it. Your allocator will operate in units of 4096 bytes, called pages. Your 

task will be to maintain data structures that record which physical pages are free and which are 

allocated, and how many processes are sharing each allocated page. You will also write the 

routines to allocate and free pages of memory. 

The second component of memory management is virtual memory, which maps the virtual 

addresses used by kernel and user software to addresses in physical memory. The x86 

hardware’s memory management unit (MMU) performs the mapping when instructions use 

memory, consulting a set of page tables. You will modify JOS to set up the MMU’s page tables 

according to a specification we provide. 

Getting started 

In this and future labs you will progressively build up your kernel. We will also provide you with 

some additional source. First, commit changes you’ve made since handing in lab 1 (if any), then 

switch to lab2 branch.  

Note: after running the script from the setup, your repo should already create local branches 

from lab1 – lab4. You may verify it by typing: 

 git branch -a 
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Now switch to lab2 branch by typing: 

 git checkout lab2 

 

Git allows switching between existing branches using git checkout branch-name, though you 

should commit any outstanding changes on one branch before switching to a different one. 

You will now need to merge the changes you made in your lab1 branch into the lab2 branch, as 

follows: 

$ git merge lab1 
Merge made by recursive. 
 kern/kdebug.c  |   11 +++++++++-- 
 kern/monitor.c |   19 +++++++++++++++++++ 
 lib/printfmt.c |    7 +++---- 
 3 files changed, 31 insertions(+), 6 deletions(-) 
$  
 

In some cases, Git may not be able to figure out how to merge your changes with the new lab 

assignment (e.g. if you modified some of the code that is changed in the second lab 

assignment). In that case, the git merge command will tell you which files are conflicted, and you 

should first resolve the conflict (by editing the relevant files) and then commit the resulting files 

with git commit -a. 

Lab 2 contains the following new source files, which you should browse through: 

• inc/memlayout.h 
• kern/pmap.c 
• kern/pmap.h 
• kern/kclock.h 
• kern/kclock.c 

memlayout.h describes the layout of the virtual address space that you must implement by 

modifying pmap.c. memlayout.h and pmap.h define the PageInfo structure that you’ll use to keep track 

of which pages of physical memory are free. kclock.c and kclock.h manipulate the PC’s battery-

backed clock and CMOS RAM hardware, in which the BIOS records the amount of physical 

memory the PC contains, among other things. The code in pmap.c needs to read this device 

hardware in order to figure out how much physical memory there is, but that part of the code is 

done for you: you do not need to know the details of how the CMOS hardware works. 
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Pay particular attention to memlayout.h and pmap.h, since this lab requires you to use and 

understand many of the definitions they contain. You may want to review inc/mmu.h, too, as it 

also contains a number of definitions that will be useful for this lab. 

Lab Requirements 

Like in previous labs, do all of the regular exercises described in the lab and provide a writeup 

that briefly answers to the questions posed in the lab. Please place the write-up in a file 

called answers-lab2.txt in the top level of your directory in this branch before handing in your 

work. There are 6 questions that need to be answered in the writeup, see highlighted.  

Hand-In Procedure 

When you are ready to hand in your lab code and write-up, add your answers-lab2.txt to the Git 

repository, commit your changes, and then tag your commit with lab2-final as the final to submit 

the lab. 

$ git add answers-lab2.txt 
$ git commit -am "my answer to lab2" 
[lab2 a823de9] my answer to lab2 
 4 files changed, 87 insertions(+), 10 deletions(-) 
$ make grade # check your result! 
$ git tag lab2-final 
$ git push 
$ git push origin --tags 

As before, we will be grading your solutions with a grading program. You can run make grade in 

the lab directory to test your kernel with the grading program. You may change any of the kernel 

source and header files you need to in order to complete the lab, but needless to say you must 

not change or otherwise subvert the grading code. 

Part 1: Physical Page Management 

The operating system must keep track of which parts of physical RAM are free and which are 

currently in use. JOS manages the PC’s physical memory with page granularity so that it can 

use the MMU to map and protect each piece of allocated memory. 

You’ll now write the physical page allocator. It keeps track of which pages are free with a linked 

list of struct PageInfo objects (which, unlike xv6, are not embedded in the free pages 

themselves), each corresponding to a physical page. You need to write the physical page 

allocator before you can write the rest of the virtual memory implementation, because your page 

table management code will need to allocate physical memory in which to store page tables. 
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Note 

Exercise 1. In the file kern/pmap.c, you must implement code for the following functions 

  
(probably in the order given). 
 
boot_alloc() 
mem_init() (only up to the call to check_page_free_list(1)) 
page_init() 
page_alloc() 
page_free() 

check_page_free_list() and check_page_alloc() test your physical page allocator. You should boot 

JOS and see whether check_page_alloc() reports success. Fix your code so that it passes. You 

may find it helpful to add your own assert() to verify that your assumptions are correct. 

This lab, and all the cs444/544 labs, will require you to do a bit of detective work to figure out 

exactly what you need to do. This assignment does not describe all the details of the code you’ll 

have to add to JOS. Look for comments in the parts of the JOS source that you have to modify; 

those comments often contain specifications and hints. You will also need to look at related 

parts of JOS, at the Intel manuals. 

Part 2: Virtual Memory 

Before doing anything else, familiarize yourself with the x86’s protected-mode memory 

management architecture: namely segmentation and page translation. 

Note 

Exercise 2. Look at chapters 5 and 6 of the Intel 80386 Reference Manual, if you haven’t done 
so already. Read the sections about page translation and page-based protection closely (5.2 
and 6.4). We recommend that you also skim the sections about segmentation; while JOS uses 
paging for virtual memory and protection, segment translation and segment-based protection 
cannot be disabled on the x86, so you will need a basic understanding of it. 

 

Virtual, Linear, and Physical Addresses 

In x86 terminology, a virtual address consists of a segment selector and an offset within the 

segment. A linear address is what you get after segment translation but before page translation. 

A physical address is what you finally get after both segment and page translation and what 

ultimately goes out on the hardware bus to your RAM. 

 

 

https://web.engr.oregonstate.edu/~songyip/Teaching/CS444/i386.pdf
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           Selector  +--------------+         +-----------+ 
          ---------->|              |         |           | 
                     | Segmentation |         |  Paging   | 
Software             |              |-------->|           |---------->  RAM 
            Offset   |  Mechanism   |         | Mechanism | 
          ---------->|              |         |           | 
                     +--------------+         +-----------+ 
            Virtual                   Linear                Physical 

A C pointer is the “offset” component of the virtual address. In boot/boot.S, we installed a Global 

Descriptor Table (GDT) that effectively disabled segment translation by setting all segment base 

addresses to 0 and limits to 0xffffffff. Hence the “selector” has no effect and the linear address 

always equals the offset of the virtual address. In lab 3, we’ll have to interact a little more with 

segmentation to set up privilege levels, but as for memory translation, we can ignore 

segmentation throughout the JOS labs and focus solely on page translation. 

Recall that in part 3 of lab 1, we installed a simple page table so that the kernel could run at its 

link address of 0xf0100000, even though it is actually loaded in physical memory just above the 

ROM BIOS at 0x00100000. This page table mapped only 4MB of memory. In the virtual memory 

layout you are going to set up for JOS in this lab, we’ll expand this to map the first 256MB of 

physical memory starting at virtual address 0xf0000000 and to map a number of other regions of 

virtual memory. 

Note 

Exercise 3. While GDB can only access QEMU’s memory by virtual address, it’s often useful to 
be able to inspect physical memory while setting up virtual memory. Review the QEMU monitor 
commands from the lab setup page (page 11-13), especially the xp command, which lets you 

inspect physical memory. To access the QEMU monitor, press Ctrl-a c in the terminal (the 

same binding returns to the serial console). 

Use the xp command in the QEMU monitor and the x command in GDB to inspect memory at 

corresponding physical and virtual addresses and make sure you see the same data. 

From code executing on the CPU, once we’re in protected mode (which we entered first thing 

in boot/boot.S, there’s no way to directly use a linear or physical address. All memory references 

are interpreted as virtual addresses and translated by the MMU, which means all pointers in C 

are virtual addresses. 

The JOS kernel often needs to manipulate addresses as opaque values or as integers, without 

dereferencing them, for example in the physical memory allocator. Sometimes these are virtual 

addresses, and sometimes they are physical addresses. To help document the code, the JOS 

source distinguishes the two cases: the type uintptr_t represents opaque virtual addresses, 

and physaddr_t represents physical addresses. Both these types are really just synonyms for 32-

https://classes.engr.oregonstate.edu/eecs/spring2024/cs444-001/labs/Lab_setup.pdf
https://classes.engr.oregonstate.edu/eecs/spring2024/cs444-001/labs/Lab_setup.pdf
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bit integers (uint32_t), so the compiler won’t stop you from assigning one type to another! Since 

they are integer types (not pointers), the compiler will complain if you try to dereference them. 

The JOS kernel can dereference a uintptr_t by first casting it to a pointer type. In contrast, the 

kernel can’t sensibly dereference a physical address, since the MMU translates all memory 

references. If you cast a physaddr_t to a pointer and dereference it, you may be able to load and 

store to the resulting address (the hardware will interpret it as a virtual address), but you 

probably won’t get the memory location you intended. 

To summarize: 

C type Address type 

T* Virtual 

uintptr_t Virtual 

physaddr_t Physical 

Note 

In your lab2 writeup, answer the following questions: 
Questions 1: Assuming that the following JOS kernel code is correct, what type should 
variable x have, uintptr_t or physaddr_t, and why? 

mystery_t x; 
char* value = return_a_pointer(); 
*value = 10; 
x = (mystery_t) value; 

The JOS kernel sometimes needs to read or modify memory for which it knows only the physical 

address. For example, adding a mapping to a page table may require allocating physical 

memory to store a page directory and then initializing that memory. However, the kernel, like 

any other software, cannot bypass virtual memory translation and thus cannot directly load and 

store to physical addresses. One reason JOS remaps of all of physical memory starting from 

physical address 0 at virtual address 0xf0000000 is to help the kernel read and write memory for 

which it knows just the physical address. In order to translate a physical address into a virtual 

address that the kernel can actually read and write, the kernel must add 0xf0000000 to the 

physical address to find its corresponding virtual address in the remapped region. You should 

use KADDR(pa) to do that addition. 

The JOS kernel also sometimes needs to be able to find a physical address given the virtual 

address of the memory in which a kernel data structure is stored. Kernel global variables and 

memory allocated by boot_alloc() are in the region where the kernel was loaded, starting 
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at 0xf0000000, the very region where we mapped all of physical memory. Thus, to turn a virtual 

address in this region into a physical address, the kernel can simply subtract 0xf0000000. You 

should use PADDR(va) to do that subtraction. 

Reference counting 

In future labs you will often have the same physical page mapped at multiple virtual addresses 

simultaneously (or in the address spaces of multiple environments). You will keep a count of the 

number of references to each physical page in the pp_ref field of 

the struct PageInfo corresponding to the physical page. When this count goes to zero for a 

physical page, that page can be freed because it is no longer used. In general, this count should 

equal to the number of times the physical page appears below ``UTOP`` in all page tables (the 

mappings above UTOP are mostly set up at boot time by the kernel and should never be freed, so 

there’s no need to reference count them). We’ll also use it to keep track of the number of 

pointers we keep to the page directory pages and, in turn, of the number of references the page 

directories have to page table pages. 

Be careful when using page_alloc. The page it returns will always have a reference count of 0, 

so pp_ref should be incremented as soon as you’ve done something with the returned page (like 

inserting it into a page table). Sometimes this is handled by other functions (for 

example, page_insert) and sometimes the function calling page_alloc must do it directly. 

Page Table Management 

Now you’ll write a set of routines to manage page tables: to insert and remove linear-to-physical 

mappings, and to create page table pages when needed. 

Note 

Exercise 4. In the file kern/pmap.c, you must implement code for the following functions. 

pgdir_walk() 
boot_map_region() 
page_lookup() 
page_remove() 
page_insert() 

check_page(), called from mem_init(), tests your page table management routines. You should 

make sure it reports success before proceeding. 
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Part 3: Kernel Address Space 

JOS divides the processor’s 32-bit linear address space into two parts. User environments 

(processes), which we will begin loading and running in lab 3, will have control over the layout 

and contents of the lower part, while the kernel always maintains complete control over the 

upper part. The dividing line is defined somewhat arbitrarily by the symbol ULIM in inc/memlayout.h, 

reserving approximately 256MB of virtual address space for the kernel. This explains why we 

needed to give the kernel such a high link address in lab 1: otherwise there would not be 

enough room in the kernel’s virtual address space to map in a user environment below it at the 

same time. 

You’ll find it helpful to refer to the JOS memory layout diagram in inc/memlayout.h both for this 

part and for later labs. 

Permissions and Fault Isolation 

Since kernel and user memory are both present in each environment’s address space, we will 

have to use permission bits in our x86 page tables to allow user code access only to the user 

part of the address space. Otherwise bugs in user code might overwrite kernel data, causing a 

crash or more subtle malfunction; user code might also be able to steal other environments’ 

private data. 

The user environment will have no permission to any of the memory above ULIM, while the kernel 

will be able to read and write this memory. For the address range [UTOP,ULIM), both the kernel 

and the user environment have the same permission: they can read but not write this address 

range. This range of address is used to expose certain kernel data structures read-only to the 

user environment. Lastly, the address space below UTOP is for the user environment to use; the 

user environment will set permissions for accessing this memory. 

 

Initializing the Kernel Address Space 

Now you’ll set up the address space above UTOP: the kernel part of the address 

space. inc/memlayout.h shows the layout you should use. You’ll use the functions you just wrote 

to set up the appropriate linear to physical mappings. 
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Note 

Exercise 5. Fill in the missing code in mem_init() after the call to check_page(). 

Your code should now pass the check_kern_pgdir() and check_page_installed_pgdir() checks. 

Note 

In your lab2 writeup, answer the following questions: 
2. What entries (rows) in the page directory have been filled in at this point? What addresses do 
they map and where do they point? In other words, fill out this table as much as possible: 

Entry Base Virtual Address Points to (logically) 

1023 ? Page table for top 4MB of phys memory 

1022 ? ? 

. ? ? 

. ? ? 

. ? ? 

2 0x00800000 ? 

1 0x00400000 ? 

0 0x00000000 [see next question] 

3. We have placed the kernel and user environment in the same address space. Why will user 
programs not be able to read or write the kernel’s memory? What specific mechanisms 
protect the kernel memory? 

4. What is the maximum amount of physical memory that this operating system can support? 

Why? 

5. How much space overhead is there for managing memory, if we actually had the maximum 

amount of physical memory? How is this overhead broken down? 

6. Revisit the page table setup in kern/entry.S and kern/entrypgdir.c. Immediately after we turn 

on paging, EIP is still a low number (a little over 1MB). At what point do we transition to 

running at an EIP above KERNBASE? What makes it possible for us to continue executing 

at a low EIP between when we enable paging and when we begin running at an EIP above 

KERNBASE? Why is this transition necessary? 
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Note 

Challenge (extra-credit 2%) Extend the JOS kernel monitor with commands to: 

• Display in a useful and easy-to-read format all of the physical page mappings (or lack 

thereof) that apply to a particular range of virtual/linear addresses in the currently active 

address space. For example, you might enter 'showmappings 0x3000 0x5000' to display the 

physical page mappings and corresponding permission bits that apply to the pages at virtual 

addresses 0x3000, 0x4000, and 0x5000. 

• Explicitly set, clear, or change the permissions of any mapping in the current address space. 

• Dump the contents of a range of memory given either a virtual or physical address range. Be 

sure the dump code behaves correctly when the range extends across page boundaries! 

• Do anything else that you think might be useful later for debugging the kernel. (There’s a 

good chance it will be!) 

• Once you finish this, please create a file .lab2-extra at the root of your repository directory 

(under jos-labs-[username]/). We will use that file as an indicator that you finished this extra-

credit and then grade your work accordingly. 

Address Space Layout Alternatives 

The address space layout we use in JOS is not the only one possible. An operating system 

might map the kernel at low linear addresses while leaving the upper part of the linear address 

space for user processes. x86 kernels generally do not take this approach, however, because 

one of the x86’s backward-compatibility modes, known as virtual 8086 mode, is “hard-wired” in 

the processor to use the bottom part of the linear address space, and thus cannot be used at all 

if the kernel is mapped there. 

It is even possible, though much more difficult, to design the kernel so as not to have to 

reserve any fixed portion of the processor’s linear or virtual address space for itself, but instead 

effectively to allow user-level processes unrestricted use of the entire 4GB of virtual address 

space - while still fully protecting the kernel from these processes and protecting different 

processes from each other! 

This completes the lab. Make sure you pass all of the make grade tests and don’t forget to 

write up your answers to the questions in answers-lab2.txt. Commit your changes (including 

adding answers-lab2.txt) and run git tag lab2-final, git push, and git push origin --tags  to hand in 

your lab. Please do not forget to create and include the file .lab2-extra in case if you finished 

extra-credit challenge. Lastly, make sure you run the check_submission.sh script to verify whether 

you have submitted successfully! 


