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Lab 3: User Environments 

• Handed out: Monday, Apr 29, 2024 

• Due: 11:59 pm, Monday, May 20, 2024 

Introduction 

In this lab you will implement the basic kernel facilities required to get a protected user-mode 

environment (i.e., “process”) running. You will enhance the JOS kernel to set up the data 

structures to keep track of user environments, create a single user environment, load a 

program image into it, and start running it. You will also make the JOS kernel capable of 

handling any system calls the user environment makes and handling any other exceptions it 

causes. 

Note 

In this lab, the terms environment and process are interchangeable - both refer to an 
abstraction that allows you to run a program. We introduce the term “environment” instead of 
the traditional term “process” in order to stress the point that JOS environments and UNIX 
processes provide different interfaces, and do not provide the same semantics. 

 

Getting Started 

1. Commit changes after your Lab 2 submission (if any), then switch to lab3 branch. 

$ git commit -am "changes to lab2 after handin" 

[lab2 18d7562] changes to lab2 after handin 

  1 file changed, 3 insertions(+) 

$ git checkout lab3 

Switched to branch 'lab3' 

2. Merge your progress from Lab 2 to Lab 3. I.e., 

$ git merge lab2 

Merge made by recursive. 

 kern/pmap.c |   42 +++++++++++++++++++ 

1 files changed, 42 insertions(+), 0 deletions(-) 

Note: If you get merge conflicts after running the git merge command, it will tell you 

which files are conflicted, and you should first resolve the conflict (by editing the 

relevant files) and then commit the resulting files with git commit -a 

CONFLICT (content): Merge conflict in kern/monitor.c 

Automatic merge failed; fix conflicts and then commit the result. 
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3. Lab 3 contains a number of new source files, which you should browse: 

inc/ env.h Public definitions for user-mode environments 

  trap.h Public definitions for trap handling 

  syscall.h Public definitions for system calls from user environments to the kernel 

  lib.h Public definitions for the user-mode support library 

kern/ env.h Kernel-private definitions for user-mode environments 

  env.c Kernel code implementing user-mode environments 

  trap.h Kernel-private trap handling definitions 

  trap.c Trap handling code 

  trapentry.S Assembly-language trap handler entry-points 

  syscall.h Kernel-private definitions for system call handling 

  syscall.c System call implementation code 

lib/ Makefrag Makefile fragment to build user-mode library, obj/lib/libuser.a 

  entry.S Assembly-language entry-point for user environments 

  libmain.c User-mode library setup code called from entry.S 

  syscall.c User-mode system call stub functions 

  console.c 
User-mode implementations of putchar and getchar, providing console 

I/O 

  exit.c User-mode implementation of exit 

  panic.c User-mode implementation of panic 

user/ * Various test programs to check kernel lab 3 code 

You may also want to take another look at the useful links on Canvas, as it includes 

information on debugging user code that becomes relevant in this lab. 

Lab Requirements 

This lab is divided into two parts, A and B. It is recommended to finish Part A one week after 

this lab was assigned. No additional submission is needed, and you only need to pass all 

cases in the testing script by the lab due date. 
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As in lab 2, you will need to do all of the regular exercises described in the lab and provide a 

write-up that briefly answers the questions posed in the lab in a file called answers-lab3.txt in 

the lab3 branch of your lab directory. Do not forget to include the answer file in your 

submission with git add answers-lab3.txt. 

Inline Assembly 

In this lab you may find GCC’s inline assembly language feature useful, although it is also 

possible to complete the lab without using it. At the very least, you will need to be able to 

understand the fragments of inline assembly language (“asm” statements) that already exist in 

the source code we gave you. You can find several sources of information on GCC inline 

assembly language on the useful links page. 

Part A: User Environments and Exception Handling 

The new include file inc/env.h contains basic definitions for user environments in JOS. Read it 

now. The kernel uses the Env data structure to keep track of each user environment. In this lab 

you will initially create just one environment, but you will need to design the JOS kernel to 

support multiple environments; lab 4 will take advantage of this feature by allowing a user 

environment to fork other environments. 

As you can see in kern/env.c, the kernel maintains three main global variables pertaining to 

environments: 

struct Env *envs = NULL;           // All environments 
struct Env *curenv = NULL;         // The current env 
static struct Env *env_free_list;  // Free environment list 

Once JOS gets up and running, the envs pointer points to an array of Env structures 

representing all the environments in the system. In our design, the JOS kernel will support a 

maximum of NENV simultaneously active environments, although there will typically be far fewer 

running environments at any given time. (NENV is a constant #define’d in inc/env.h.) Once it is 

allocated, the envs array will contain a single instance of the Env data structure for each of 

the NENV possible environments. 

The JOS kernel keeps all of the inactive Env structures on the env_free_list. This design allows 

easy allocation and deallocation of environments, as they merely have to be added to or 

removed from the free list. 
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The kernel uses the curenv symbol to keep track of the currently executing environment at any 

given time. During boot up, before the first environment is run, curenv is initially set to NULL. 

Environment State 

The Env structure is defined in inc/env.h as follows (although more fields will be added in future 

labs): 

struct Env { 
    struct Trapframe env_tf;    // Saved registers 
    struct Env *env_link;       // Next free Env 
    envid_t env_id;             // Unique environment identifier 
    envid_t env_parent_id;      // env_id of this env's parent 
    enum EnvType env_type;      // Indicates special system environments 
    unsigned env_status;        // Status of the environment 
    uint32_t env_runs;          // Number of times environment has run 
 
    // Address space 
    pde_t *env_pgdir;           // Kernel virtual address of page dir 
}; 

 
 
Here’s what the Env fields are for: 

• env_tf: 

This structure, defined in inc/trap.h, holds the saved register values for the environment 

while that environment is not running: i.e., when the kernel or a different environment is 

running. The kernel saves these when switching from user to kernel mode, so that the 

environment can later be resumed where it left off. 

• env_link: 

This is a link to the next Env on the env_free_list. env_free_list points to the first free 

environment on the list. 

• env_id: 

The kernel stores here a value that uniquely identifiers the environment currently using 

this Env structure (i.e., using this particular slot in the envs array). After a user 

environment terminates, the kernel may re-allocate the same Env structure to a different 

environment - but the new environment will have a different env_id from the old one 

even though the new environment is re-using the same slot in the envs array. 

• env_parent_id: 

The kernel stores here the env_id of the environment that created this environment. In 

this way the environments can form a “family tree,” which will be useful for making 

security decisions about which environments are allowed to do what to whom. 
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• env_type: 

This is used to distinguish special environments. For most environments, it will 

be ENV_TYPE_USER. We’ll introduce a few more types for special system service 

environments in later labs. 

• env_status: 

This variable holds one of the following values: 

ENV_FREE: 

Indicates that the Env structure is inactive, and therefore on the env_free_list. 

ENV_RUNNABLE: 

Indicates that the Env structure represents an environment that is waiting to run 

on the processor. 

ENV_RUNNING: 

Indicates that the Env structure represents the currently running environment. 

ENV_NOT_RUNNABLE: 

Indicates that the Env structure represents a currently active environment, but it is 

not currently ready to run: for example, because it is waiting for an interprocess 

communication (IPC) from another environment. 

ENV_DYING: 

Indicates that the Env structure represents a zombie environment. A zombie 

environment will be freed the next time it traps to the kernel. We will not use this 

flag until Lab 4. 

• env_pgdir: 

This variable holds the kernel virtual address of this environment’s page directory. 

 

Like a Unix process, a JOS environment couples the concepts of “thread” and “address 

space”. The thread is defined primarily by the saved registers (the env_tf field), and the 

address space is defined by the page directory and page tables pointed to by env_pgdir. To run 

an environment, the kernel must set up the CPU with both the saved registers and the 

appropriate address space. 

Our struct Env is analogous to struct proc in xv6. Both structures hold the environment’s (i.e., 

process’s) user-mode register state in a Trapframe structure. In JOS, individual environments do 

not have their own kernel stacks as processes do in xv6. There can be only one JOS 

environment active in the kernel at a time, so JOS needs only a single kernel stack. 
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Allocating the Environments Array 

In lab 2, you allocated memory in mem_init() for the pages[] array, which is a table the kernel 

uses to keep track of which pages are free and which are not. You will now need to 

modify mem_init() further to allocate a similar array of Env structures, called envs. 

Note 

Exercise 1. Modify mem_init() in kern/pmap.c to allocate and map the envs array. This array 

consists of exactly NENV instances of the Env structure allocated much like how you allocated 

the pages array. Also like the pages array, the memory backing envs should also be mapped user 

read-only at UENVS (defined in inc/memlayout.h) so user processes can read from this array. 

 

You should run your code and make sure check_kern_pgdir() succeeds. 

 
Creating and Running Environments 

You will now write the code in kern/env.c necessary to run a user environment. Because we do 

not yet have a filesystem, we will set up the kernel to load a static binary image that 

is embedded within the kernel itself. JOS embeds this binary in the kernel as an ELF 

executable image. 

The Lab 3 Makefile generates a number of binary images in the obj/user/ directory. If you look 

at kern/Makefrag, you will notice some magic that “links” these binaries directly into the kernel 

executable as if they were .o files. The -b binary option on the linker command line causes 

these files to be linked in as “raw” uninterpreted binary files rather than as regular .o files 

produced by the compiler. (As far as the linker is concerned, these files do not have to be ELF 

images at all - they could be anything, such as text files or pictures!) If you look 

at obj/kern/kernel.sym after building the kernel, you will notice that the linker has “magically” 

produced a number of funny symbols with obscure names like 

binary_obj_user_hello_start, _binary_obj_user_hello_end, and _binary_obj_user_hello_size. The linker 

generates these symbol names by mangling the file names of the binary files; the symbols 

provide the regular kernel code with a way to reference the embedded binary files. 

In i386_init() in kern/init.c, you’ll see code to run one of these binary images in an 

environment. However, the critical functions to set up user environments are not complete; you 

will need to fill them in. 

 



7 
 

Note 

Exercise 2. In the file env.c, finish coding the following functions: 

• env_init() 

Initialize all of the Env structures in the envs array and add them to the env_free_list. Also 

calls env_init_percpu, which configures the segmentation hardware with separate 

segments for privilege level 0 (kernel) and privilege level 3 (user). 

• env_setup_vm() 

Allocate a page directory for a new environment and initialize the kernel portion of the 
new environment’s address space. 

• region_alloc() 

Allocates and maps physical memory for an environment. 

• load_icode() 

You will need to parse an ELF binary image, much like the boot loader already does, 
and load its contents into the user address space of a new environment. 

• env_create() 

Allocate an environment with env_alloc and call load_icode load an ELF binary into it. 

• env_run() 

Start a given environment running in user mode. 
 
As you write these functions, you might find the new cprintf verb %e useful – it prints a 

description corresponding to an error code. For example, 
r = -E_NO_MEM; 
panic("env_alloc: %e", r); 

will panic with the message “env_alloc: out of memory”. 

 

Below is a call graph of the code up to the point where the user code is invoked. Make sure 

you understand the purpose of each step. 

+--> start (kern/entry.S) 
+--> i386_init (kern/init.c) 
    +--> cons_init() 
    +--> mem_init() 
    +--> env_init() 
    +--> trap_init() ; still incomplete at this point 
    +--> env_create() 
    +--> env_run() 
        +--> env_pop_tf() 

Once you are done you should compile your kernel and run it under QEMU. If all goes well, 

your system should enter user space and execute the hello binary until it makes a system call 

with the int instruction. At that point there will be trouble, since JOS has not set up the 

hardware to allow any kind of transition from user space into the kernel. When the CPU 

discovers that it is not set up to handle this system call interrupt, it will generate a general 

protection exception, find that it can’t handle that, generate a double fault exception, find that it 

can’t handle that either, and finally give up with what’s known as a “triple fault”. Usually, you 
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would then see the CPU reset and the system reboot. While this is important for legacy 

applications (see Wikipedia: Triple Fault), it’s a pain for kernel development, so QEMU 

produces a dump of the virtual machine upon a triple fault for debugging purposes. 

We’ll address this problem shortly, but for now we can use the debugger to check that we’re 

entering user mode. Use make qemu-gdb and set a GDB breakpoint at env_pop_tf(), which should 

be the last function you hit before actually entering user mode. Single step through this 

function using si; the processor should enter user mode after the iret instruction. You should 

then see the first instruction in the user environment’s executable, which is the cmpl instruction 

at the label start in lib/entry.S. Now use b *0x… to set a breakpoint at 

the int $0x30 in sys_cputs() in hello (see obj/user/hello.asm for the user-space address). 

This int is the system call to display a character to the console. If you cannot execute as far as 

the int, then something is wrong with your address space setup or program loading code; go 

back and fix it before continuing. 

Handling Interrupts and Exceptions 

At this point, the first int $0x30 system call instruction in user space is a dead end: once the 

processor gets into user mode, there is no way to get back out. You will now need to 

implement basic exceptions and system call handling, so that it is possible for the kernel to 

recover control of the processor from user-mode code. The first thing you should do is 

thoroughly familiarize yourself with the x86 interrupt and exception mechanism. 

Note 

Exercise 3. Read Chapter 6, Interrupt and Exception Handling of the IA-32 Developer’s 
Manual, if you haven’t already. 

In this lab we generally follow Intel’s terminology for interrupts, exceptions, and the like. 

However, terms such as exception, trap, interrupt, fault and abort have no standard meaning 

across architectures or operating systems, and are often used without regard to the subtle 

distinctions between them on a particular architecture such as the x86. When you see these 

terms outside of this lab, the meanings might be slightly different. 

Basics of Protected Control Transfer 

Exceptions and interrupts are both “protected control transfers,” which cause the processor to 

switch from user to kernel mode (CPL=0) without giving the user-mode code any opportunity to 

interfere with the functioning of the kernel or other environments. In Intel’s terminology, 

https://en.wikipedia.org/wiki/Triple_fault
https://web.engr.oregonstate.edu/~songyip/Teaching/CS444/IA32-3A.pdf
https://web.engr.oregonstate.edu/~songyip/Teaching/CS444/IA32-3A.pdf
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an interrupt is a protected control transfer that is caused by an asynchronous event usually 

external to the processor, such as notification of external device I/O activity. An exception, in 

contrast, is a protected control transfer caused synchronously by the currently running code, 

for example due to a divide by zero or an invalid memory access. 

In order to ensure that these protected control transfers are actually protected, the processor’s 

interrupt/exception mechanism is designed so that the code currently running when the 

interrupt or exception occurs does not get to choose arbitrarily where the kernel is entered or 

how. Instead, the processor ensures that the kernel can be entered only under carefully 

controlled conditions. On the x86, two mechanisms work together to provide this protection: 

1. The Interrupt Descriptor Table. The processor ensures that interrupts and exceptions 

can only cause the kernel to be entered at a few specific, well-defined entry-

points determined by the kernel itself, and not by the code running when the interrupt or 

exception is taken. 

The x86 allows up to 256 different interrupt or exception entry points into the kernel, 

each with a different interrupt vector. A vector is a number between 0 and 255. An 

interrupt’s vector is determined by the source of the interrupt: different devices, error 

conditions, and application requests to the kernel generate interrupts with different 

vectors. The CPU uses the vector as an index into the processor’s interrupt descriptor 

table (IDT), which the kernel sets up in kernel-private memory, much like the GDT. 

From the appropriate entry in this table the processor loads: 

• the value to load into the instruction pointer (EIP) register, pointing to the kernel code 

designated to handle that type of exception. 

• the value to load into the code segment (CS) register, which includes in bits 0-1 the 

privilege level at which the exception handler is to run. (In JOS, all exceptions are 

handled in kernel mode, privilege level 0.) 

2. The Task State Segment. The processor needs a place to save the old processor state 

before the interrupt or exception occurred, such as the original values 

of EIP and CS before the processor invoked the exception handler, so that the exception 

handler can later restore that old state and resume the interrupted code from where it 

left off. But this save area for the old processor state must in turn be protected from 

unprivileged user-mode code; otherwise buggy or malicious user code could 

compromise the kernel. 

For this reason, when an x86 processor takes an interrupt or trap that causes a privilege 

level change from user to kernel mode, it also switches to a stack in the kernel’s 

memory. A structure called the task state segment (TSS) specifies the segment selector 
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and address where this stack lives. The processor pushes (on this new 

stack) SS, ESP, EFLAGS, CS, EIP, and an optional error code. Then it loads 

the CS and EIP from the interrupt descriptor, and sets the ESP and SS to refer to the new 

stack. 

Although the TSS is large and can potentially serve a variety of purposes, JOS only 

uses it to define the kernel stack that the processor should switch to when it transfers 

from user to kernel mode. Since “kernel mode” in JOS is privilege level 0 on the x86, the 

processor uses the ESP0 and SS0 fields of the TSS to define the kernel stack when 

entering kernel mode. JOS doesn’t use any other TSS fields. 

 

Types of Exceptions and Interrupts 

All of the synchronous exceptions that the x86 processor can generate internally use interrupt 

vectors between 0 and 31, and therefore map to IDT entries 0-31. For example, a page fault 

always causes an exception through vector 14. Interrupt vectors greater than 31 are only used 

by software interrupts, which can be generated by the int instruction, or 

asynchronous hardware interrupts, caused by external devices when they need attention. 

In this section we will extend JOS to handle the internally generated x86 exceptions in vectors 

0-31. In the next section we will make JOS handle software interrupt vector 48 (0x30), which 

JOS (fairly arbitrarily) uses as its system call interrupt vector. In Lab 4 we will extend JOS to 

handle externally generated hardware interrupts such as the clock interrupt. 

An Example 

Let’s put these pieces together and trace through an example. Let’s say the processor is 

executing code in a user environment and encounters a divide instruction that attempts to 

divide by zero. 

1. The processor switches to the stack defined by the SS0 and ESP0 fields of the TSS, which 

in JOS will hold the values GD_KD and KSTACKTOP, respectively. 

2. The processor pushes the exception parameters on the kernel stack, starting at 

address KSTACKTOP: 
1. +--------------------+ KSTACKTOP 
2. | 0x00000 | old SS   |     " - 4 
3. |      old ESP       |     " - 8 
4. |     old EFLAGS     |     " - 12 
5. | 0x00000 | old CS   |     " - 16 
6. |      old EIP       |     " - 20 <---- ESP 
7. +--------------------+ 
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3. Because we’re handling a divide error, which is interrupt vector 0 on the x86, the 

processor reads IDT entry 0 and sets CS:EIP to point to the handler function described 

by the entry. 

4. The handler function takes control and handles the exception, for example by 

terminating the user environment. 

For certain types of x86 exceptions, in addition to the “standard” five words above, the 

processor pushes onto the stack another word containing an error code. The page fault 

exception, number 14, is an important example. See the 80386 manual to determine for which 

exception numbers the processor pushes an error code, and what the error code means in that 

case. When the processor pushes an error code, the stack would look as follows at the 

beginning of the exception handler when coming in from user mode: 

+--------------------+ KSTACKTOP 
| 0x00000 | old SS   |     " - 4 
|      old ESP       |     " - 8 
|     old EFLAGS     |     " - 12 
| 0x00000 | old CS   |     " - 16 
|      old EIP       |     " - 20 
|     error code     |     " - 24 <---- ESP 
+--------------------+ 

Nested Exceptions and Interrupts 

The processor can take exceptions and interrupts both from kernel and user mode. It is only 

when entering the kernel from user mode, however, that the x86 processor automatically 

switches stacks before pushing its old register state onto the stack and invoking the 

appropriate exception handler through the IDT. If the processor is already in kernel mode when 

the interrupt or exception occurs (the low 2 bits of the CS register are already zero), then the 

CPU just pushes more values on the same kernel stack. In this way, the kernel can gracefully 

handle nested exceptions caused by code within the kernel itself. This capability is an 

important tool in implementing protection, as we will see later in the section on system calls. 

If the processor is already in kernel mode and takes a nested exception, since it does not need 

to switch stacks, it does not save the old SS or ESP registers. For exception types that do not 

push an error code, the kernel stack therefore looks like the following on entry to the exception 

handler: 

+--------------------+ <---- old ESP 
|     old EFLAGS     |     " - 4 
| 0x00000 | old CS   |     " - 8 
|      old EIP       |     " - 12 
+--------------------+ 
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For exception types that push an error code, the processor pushes the error code immediately 

after the old EIP, as before. 

There is one important caveat to the processor’s nested exception capability. If the processor 

takes an exception while already in kernel mode, and cannot push its old state onto the kernel 

stack for any reason such as lack of stack space, then there is nothing the processor can do to 

recover, so it simply resets itself. Needless to say, the kernel should be designed so that this 

can’t happen. 

 

Setting Up the IDT 

You should now have the basic information you need in order to set up the IDT and handle 

exceptions in JOS. For now, you will set up the IDT to handle interrupt vectors 0-31 (the 

processor exceptions). We’ll handle system call interrupts later in this lab and add interrupts 

32-47 (the device IRQs) in a later lab. 

The header files inc/trap.h and kern/trap.h contain important definitions related to interrupts 

and exceptions that you will need to become familiar with. The file kern/trap.h contains 

definitions that are strictly private to the kernel, while inc/trap.h contains definitions that may 

also be useful to user-level programs and libraries. 

Note: Some of the exceptions in the range 0-31 are defined by Intel to be reserved. Since they 

will never be generated by the processor, it doesn’t really matter how you handle them. Do 

whatever you think is cleanest. 

The overall flow of control that you should achieve is depicted below: 

      IDT                   trapentry.S           trap.c 
 

+----------------+ 
|   &handler1    |---------> handler1:       +--> trap (struct Trapframe *tf) 
|                |             // do stuff   |    { 
|                |             call trap ----+      // handle the exception/interrupt 
|                |             // ...             } 
+----------------+ 
|   &handler2    |--------> handler2: 
|                |            // do stuff 
|                |            call trap 
|                |            // ... 
+----------------+ 
       . 
       . 
       . 
+----------------+ 
|   &handlerX    |--------> handlerX: 
|                |             // do stuff 
|                |             call trap 
|                |             // ... 
+----------------+ 
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Each exception or interrupt should have its own handler in trapentry.S and trap_init() should 

initialize the IDT with the addresses of these handlers. Each of the handlers should build 

a struct Trapframe (see inc/trap.h) on the stack and call trap() (in trap.c) with a pointer to the 

Trapframe. trap() then handles the exception/interrupt or dispatches to a specific handler 

function. 

Note 

Exercise 4. Edit trapentry.S and trap.c and implement the features described above. The 

macros TRAPHANDLER and TRAPHANDLER_NOEC in trapentry.S should help you, as well as 

the T\_\* defines in inc/trap.h. You will need to add an entry point in trapentry.S (using those 

macros) for each trap defined in inc/trap.h, and you’ll have to provide _alltraps which 

the TRAPHANDLER macros refer to. You will also need to modify trap_init() to initialize the idt to 

point to each of these entry points defined in trapentry.S; the SETGATE macro will be helpful here. 

Your _alltraps should: 

1. push values to make the stack look like a struct Trapframe 
2. load GD_KD into %ds and %es 

3. pushl %esp to pass a pointer to the Trapframe as an argument to trap() 

4. call trap (can trap ever return?) 

Consider using the pushal instruction; it fits nicely with the layout of the struct Trapframe. 

Test your trap handling code using some of the test programs in the user directory that cause 

exceptions before making any system calls, such as user/divzero. You should be able to get 

make grade to succeed on the divzero, softint, and badsegment tests at this point. 

 

Note 

Answer the following questions in your answers-lab3.txt: 

1. What is the purpose of having an individual handler function for each exception/interrupt? 
(i.e., if all exceptions/interrupts were delivered to the same handler, what feature that exists 
in the current implementation could not be provided?) 
 

2. Did you have to do anything to make the user/softint program behave correctly? The grade 

script expects it to produce a general protection fault (trap 13), but softint ’s code 

says int $14. Why should this produce interrupt vector 13? What happens if the kernel 

actually allows softint’s int $14 instruction to invoke the kernel’s page fault handler (which 

is interrupt vector 14)? 

This concludes part A of the lab. Please commit and push your progress before moving on to 

part B.  
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Part B: Page Faults, Breakpoints Exceptions, and 
System Calls 

Now that your kernel has basic exception handling capabilities, you will refine it to provide 

important operating system primitives that depend on exception handling. 

Handling Page Faults 

The page fault exception, interrupt vector 14 (T_PGFLT), is a particularly important one that we 

will exercise heavily throughout this lab and the next. When the processor takes a page fault, it 

stores the linear (i.e., virtual) address that caused the fault in a special processor control 

register, CR2. In trap.c we have provided the beginnings of a special 

function, page_fault_handler(), to handle page fault exceptions. 

Note 

Exercise 5. Modify trap_dispatch() to dispatch page fault exceptions to page_fault_handler(). You 

should now be able to get make grade to succeed on the faultread, faultreadkernel, faultwrite, 

and faultwritekernel tests. If any of them don’t work, figure out why and fix them. Remember 

that you can boot JOS into a particular user program using make run-prog (e.g., make run-faultred) 

or make run-prog-gdb. 

You will further refine the kernel’s page fault handling below, as you implement system calls. 

The Breakpoint Exception 

The breakpoint exception, interrupt vector 3 (T_BRKPT), is normally used to allow debuggers to 

insert breakpoints in a program’s code by temporarily replacing the relevant program 

instruction with the special 1-byte int3 software interrupt instruction. In JOS we will abuse this 

exception slightly by turning it into a primitive pseudo-system call that any user environment 

can use to invoke the JOS kernel monitor. This usage is actually somewhat appropriate if we 

think of the JOS kernel monitor as a primitive debugger. The user-mode implementation 

of panic() in lib/panic.c, for example, performs an int3 after displaying its panic message. 

Note 

Exercise 6. Modify trap_dispatch() to make breakpoint exceptions invoke the kernel monitor. 

You should now be able to get make grade to succeed on the breakpoint test. 

  



15 
 

Note 

Challenge 1 (extra-credit 1%) Modify the JOS kernel monitor so that you can ‘continue’ 
execution from the current location (e.g., after the int3, if the kernel monitor was invoked via 

the breakpoint exception), and so that you can single-step one instruction at a time. You will 
need to understand certain bits of the EFLAGS register in order to implement single-stepping 

(https://en.wikipedia.org/wiki/Trap_flag). 

To get the 1% of extra credit, please implement the command si in your monitor. 

Basically, what the command si does is, run one next instruction and trap back to the monitor. 

In other words, after your JOS getting trapped into the monitor via int3, running the 

command si should execute exactly one instruction, and after that, the execution must be 

trapped again to the monitor. 

Optional: If you’re feeling really adventurous, find some x86 disassembler source code - e.g., 
by ripping it out of QEMU, or out of GNU binutils, or just write it yourself - and extend the JOS 
kernel monitor to be able to disassemble and display instructions as you are stepping through 
them. Combined with the symbol table loading from lab 2, this is the stuff of which real kernel 
debuggers are made. 
 

Note 
Answer the following questions in your answers-lab3.txt: 

 
3. The break point test case will either generate a break point exception or a general 

protection fault depending on how you initialized the break point entry in the IDT (i.e., your 
call to SETGATE from trap_init). Why? How do you need to set it up in order to get the 

breakpoint exception to work as specified above and what incorrect setup would cause it to 
trigger a general protection fault? 

4. What do you think is the point of these mechanisms, particularly in light of what 
the user/softint test program does? 

 
System calls 

User processes ask the kernel to do things for them by invoking system calls. When the user 

process invokes a system call, the processor enters kernel mode, the processor and the kernel 

cooperate to save the user process’s state, the kernel executes appropriate code in order to 

carry out the system call, and then resumes the user process. The exact details of how the 

user process gets the kernel’s attention and how it specifies which call it wants to execute vary 

from system to system. 

In the JOS kernel, we will use the int instruction, which causes a processor interrupt. In 

particular, we will use int $0x30 as the system call interrupt. We have defined the 

constant T_SYSCALL to 48 (0x30) for you. You will have to set up the interrupt descriptor to allow 

user processes to cause that interrupt. Note that interrupt 0x30 cannot be generated by 

hardware, so there is no ambiguity caused by allowing user code to generate it. 

https://en.wikipedia.org/wiki/Trap_flag
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The application will pass the system call number and the system call arguments in registers. 

This way, the kernel won’t need to grub around in the user environment’s stack or instruction 

stream. The system call number will go in %eax, and the arguments (up to five of them) will go 

in %edx, %ecx, %ebx, %edi, and %esi, respectively. The kernel passes the return value back in %eax. 

The assembly code to invoke a system call has been written for you, 

in syscall() in lib/syscall.c. You should read through it and make sure you understand what is 

going on. 

Note 

Exercise 7. Add a handler in the kernel for interrupt vector T_SYSCALL. You will have to 

edit kern/trapentry.S and kern/trap.c’s trap_init(). You also need to change trap_dispatch() to 

handle the system call interrupt by calling syscall() (defined in kern/syscall.c) with the 

appropriate arguments, and then arranging for the return value to be passed back to the user 
process in %eax. Finally, you need to implement syscall() in kern/syscall.c. Make 

sure syscall() returns -E_INVAL if the system call number is invalid. You should read and 

understand lib/syscall.c (especially the inline assembly routine) in order to confirm your 

understanding of the system call interface. Handle all the systems calls listed 
in inc/syscall.h by invoking the corresponding kernel function for each call. 

Run the user/hello program under your kernel (make run-hello). It should print “hello, world” on 

the console and then cause a page fault in user mode. If this does not happen, it probably 
means your system call handler isn’t quite right. You should also now be able to 
get make grade to succeed on the testbss test. 

 

Note 

Challenge 2 (1% extra credit)  

Implement system calls using the sysenter and sysexit instructions instead of using int 0x30 

and iret. 

 

The sysenter/sysexit instructions were designed by Intel to be faster than int/iret. They do this 

by using registers instead of the stack and by making assumptions about how the 

segmentation registers are used. The exact details of these instructions can be found in 

Volume 2B of the Intel reference manuals. 

 

The easiest way to add support for these instructions in JOS is to add 

a sysenter_handler in kern/trapentry.S that saves enough information about the user environment 

to return to it, sets up the kernel environment, pushes the arguments to syscall() and 

calls syscall() directly. Once syscall() returns, set everything up for and execute 

the sysexit instruction. You will also need to add code to kern/init.c to set up the necessary 

model specific registers (MSRs). Section 6.1.2 in Volume 2 of the AMD Architecture 

Programmer’s Manual and the reference on SYSENTER in Volume 2B of the Intel reference 

manuals give good descriptions of the relevant MSRs.  
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Finally, lib/syscall.c must be changed to support making a system call with sysenter. Here is a 

possible register layout for the sysenter instruction: 

eax                - syscall number 

edx, ecx, ebx, edi - arg1, arg2, arg3, arg4 

esi                - return pc 

ebp                - return esp 

esp                - trashed by sysenter 

 

GCC’s inline assembler will automatically save registers that you tell it to load values directly 
into. Don’t forget to either save (push) and restore (pop) other registers that you clobber, or tell 
the inline assembler that you’re clobbering them. The inline assembler doesn’t support 
saving %ebp, so you will need to add code to save and restore it yourself. The return address 

can be put into %esi by using an instruction like leal after_sysenter_label, %%esi. 

Note that this only supports 4 arguments, so you will need to leave the old method of doing 
system calls around to support 5 argument system calls. Furthermore, because this fast path 
doesn’t update the current environment’s trap frame, it won’t be suitable for some of the 
system calls we add in later labs. 

You may have to revisit your code once we enable asynchronous interrupts in the next lab. 
Specifically, you’ll need to enable interrupts when returning to the user process, 
which sysexit doesn’t do for you. 

 

User-mode startup 

A user program starts running at the top of lib/entry.S. After some setup, this code 

calls libmain(), in lib/libmain.c. You should modify libmain() to initialize the global 

pointer thisenv to point at this environment’s struct Env in the envs[] array. (Note 

that lib/entry.S has already defined envs to point at the UENVS mapping you set up in Part A.) 

Hint: look in inc/env.h and use sys_getenvid(). 

Libmain() then calls umain(), which, in the case of the hello program, is in user/hello.c. Note that 

after printing “hello, world”, it tries to access thisenv->env_id. This is why it faulted earlier. Now 

that you’ve initialized thisenv properly, it should not fault. If it still faults, you probably haven’t 

mapped the UENVS area user-readable (back in Part A in kern/pmap.c; this is the first time we’ve 

actually used the UENVS area). 

Note 

Exercise 8. Add the required code to the user library, then boot your kernel. You should 
see user/hello print “hello, world” and then print “I am environment 00001000”. User/hello then 

attempts to “exit” by calling sys_env_destroy() (see lib/libmain.c and lib/exit.c). Since the kernel 
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currently only supports one user environment, it should report that it has destroyed the only 
environment and then drop into the kernel monitor. You should be able to get make grade to 
succeed on the hello test. 

Page faults and memory protection 

Memory protection is a crucial feature of an operating system, ensuring that bugs in one 

program cannot corrupt other programs or corrupt the operating system itself. 

Operating systems usually rely on hardware support to implement memory protection. The OS 

keeps the hardware informed about which virtual addresses are valid and which are not. When 

a program tries to access an invalid address or one for which it has no permissions, the 

processor stops the program at the instruction causing the fault and then traps into the kernel 

with information about the attempted operation. If the fault is fixable, the kernel can fix it and let 

the program continue running. If the fault is not fixable, then the program cannot continue, 

since it will never get past the instruction causing the fault. 

As an example of a fixable fault, consider an automatically extended stack. In many systems 

the kernel initially allocates a single stack page, and then if a program faults accessing pages 

further down the stack, the kernel will allocate those pages automatically and let the program 

continue. By doing this, the kernel only allocates as much stack memory as the program 

needs, but the program can work under the illusion that it has an arbitrarily large stack. 

System calls present an interesting problem for memory protection. Most system call interfaces 

let user programs pass pointers to the kernel. These pointers point at user buffers to be read 

or written. The kernel then dereferences these pointers while carrying out the system call. 

There are two problems with this: 

1. A page fault in the kernel is potentially a lot more serious than a page fault in a user 

program. If the kernel page-faults while manipulating its own data structures, that’s a 

kernel bug, and the fault handler should panic the kernel (and hence the whole system). 

But when the kernel is dereferencing pointers given to it by the user program, it needs a 

way to remember that any page faults these dereferences cause are actually on behalf 

of the user program. 

2. The kernel typically has more memory permissions than the user program. The user 

program might pass a pointer to a system call that points to memory that the kernel can 

read or write but that the program cannot. The kernel must be careful not to be tricked 
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into dereferencing such a pointer, since that might reveal private information or destroy 

the integrity of the kernel. 

For both of these reasons the kernel must be extremely careful when handling pointers 

presented by user programs. 

You will now solve these two problems with a single mechanism that scrutinizes all pointers 

passed from user space into the kernel. When a program passes the kernel a pointer, the 

kernel will check that the address is in the user part of the address space, and that the page 

table would allow the memory operation. 

Thus, the kernel will never suffer a page fault due to dereferencing a user-supplied pointer. If 

the kernel does page fault, it should panic and terminate. 

Note 

Exercise 9. Change kern/trap.c to panic if a page fault happens in kernel mode. 

 

Hint: to determine whether a fault happened in user mode or in kernel mode, check the low bits 
of the tf_cs. 

 

Read user_mem_assert() in kern/pmap.c and implement user_mem_check() in that same file. 

 

Change kern/syscall.c to sanity check arguments to system calls. 

 

Boot your kernel, running user/buggyhello. The environment should be destroyed, and the kernel 

should not panic. You should see: 

[00001000] user_mem_check assertion failure for va 00000001 

[00001000] free env 00001000 

Destroyed the only environment - nothing more to do! 

 

Finally, change debuginfo_eip() in kern/kdebug.c to call user_mem_check() on usd, stabs, and stabstr. 

If you now run user/breakpoint, you should be able to run backtrace from the kernel monitor and 

see the backtrace traverse into lib/libmain.c before the kernel panics with a page fault. What 

causes this page fault? You don’t need to fix it, but you should understand why it happens. 

Note that the same mechanism you just implemented also works for malicious user 

applications (such as user/evilhello). 
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Note 

Exercise 10. Boot your kernel, running user/evilhello. The environment should be destroyed, 

and the kernel should not panic. You should see: 

[00000000] new env 00001000 
[00001000] user_mem_check assertion failure for va f010000c 
[00001000] free env 00001000 

This completes the lab. Make sure you pass all of the make grade tests and don’t forget to 

write up your answers to the questions in answers-lab3.txt. Commit your changes and 

run git tag lab3-final, git push, and git push origin --tags in the top directory of your repository 

to submit your work. 

Before handing in, use git status and git diff to examine your changes and don’t forget 

to git add answers-lab3.txt. When you’re ready, commit your changes with git commit -

am 'my solutions to lab 3' and follow the directions above. 

For those who finished extra-credit challenges, please do not forget to include the file with 

name .lab3-extra-1 or .lab3-extra-2 to indicate that you finished the extra credit challenge 1 or 

challenge 2 respectively. Lastly, don’t forget to run the check_submission.sh script to verify 

whether you have submitted successfully! 

 


