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Lab 4: Preemptive Multitasking 

• Handed out: Wednesday, May 15, 2024 

• Due: 11:59 pm, Monday, June 10, 2024 

• 75%: 11:59 pm Wednesday June 12, 2024 

 
Introduction 
In this lab you will implement preemptive multitasking among multiple simultaneously 
active user-mode environments. 

• In part A, you will add multiprocessor support to JOS, implement round-robin 
scheduling, and add basic environment management system calls (calls that 
create and destroy environments, and allocate/map memory). 

• In part B, you will implement a Unix-like fork(), which allows a user-mode 

environment to create copies of itself. 

• Finally, in part C you will add support for inter-process communication (IPC), 
allowing different user-mode environments to communicate and synchronize with 
each other explicitly. You will also add support for hardware clock interrupts and 
preemption. 
 

Getting Started 

1. Commit changes after your Lab 3 submission (if any), then switch to lab4 branch. 

$ git commit -am "changes to lab3 after handin" 

$ git checkout lab4 

Switched to branch 'lab4' 

2. Merge your progress from Lab 3 to Lab 4.  

$ git merge lab3 

Merge made by recursive. 

Solve merging conflicts if there are any.  
 

Lab 4 contains a number of new source files, some of which you should browse before 
you start: 

kern/cpu.h Kernel-private definitions for multiprocessor support 

kern/mpconfig.c Code to read the multiprocessor configuration 

kern/lapic.c Kernel code driving the local APIC unit in each processor 
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kern/mpentry.S Assembly-language entry code for non-boot CPUs 

kern/spinlock.h Kernel-private definitions for spin locks, including the big kernel lock 

kern/spinlock.c Kernel code implementing spin locks 

kern/sched.c Code skeleton of the scheduler that you are about to implement 

 

Lab Requirements 

This lab is divided into three parts, A, B, and C. 

As before, you will need to do all of the regular exercises described in the lab and 
provide a writeup that briefly answers the questions posed in the lab. Place the write-up 
in a file called answers-lab4.txt in the top level of your repository directory before handing 

in your work. 

 

Part A: Multiprocessor Support and Cooperative 
Multitasking 
In the first part of this lab, you will first extend JOS to run on a multiprocessor system, 
and then implement some new JOS kernel system calls to allow user-level 
environments to create additional new environments. You will also 
implement cooperative round-robin scheduling, allowing the kernel to switch from one 
environment to another when the current environment voluntarily relinquishes the CPU 
(or exits). Later in part C you will implement preemptive scheduling, which allows the 
kernel to re-take control of the CPU from an environment after a certain time has 
passed even if the environment does not cooperate. 
 

Multiprocessor Support 

We are going to make JOS support “symmetric multiprocessing” (SMP), a multi-
processor model in which all CPUs have equivalent access to system resources such 
as memory and I/O buses. While all CPUs are functionally identical in SMP, during the 
boot process they can be classified into two types: the bootstrap processor (BSP) is 
responsible for initializing the system and for booting the operating system; and the 
application processors (APs) are activated by the BSP only after the operating system is 
up and running. Which processor is the BSP is determined by the hardware and the 
BIOS. Up to this point, all your existing JOS code has been running on the BSP. 

In an SMP system, each CPU has an accompanying local APIC (LAPIC) unit. The 
LAPIC units are responsible for delivering interrupts throughout the system. The LAPIC 
also provides its connected CPU with a unique identifier. In this lab, we make use of the 
following basic functionality of the LAPIC unit (in kern/lapic.c): 
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• Reading the LAPIC identifier (APIC ID) to tell which CPU our code is currently 
running on (see cpunum()). 

• Sending the STARTUP interprocessor interrupt (IPI) from the BSP to the APs to 

bring up other CPUs (see lapic_startap()). 

• In part C, we program LAPIC’s built-in timer to trigger clock interrupts to support 
preemptive multitasking (see apic_init()). 

A processor accesses its LAPIC using memory-mapped I/O (MMIO). In MMIO, a portion 
of physical memory is hardwired to the registers of some I/O devices, so the same 
load/store instructions typically used to access memory can be used to access device 
registers. You’ve already seen one IO hole at physical address 0xA0000 (we use this to 

write to the VGA display buffer). The LAPIC lives in a hole starting at physical 
address 0xFE000000 (32MB short of 4GB), so it’s too high for us to access using our usual 

direct map at KERNBASE. The JOS virtual memory map leaves a 4MB gap at MMIOBASE so 

we have a place to map devices like this. Since later labs introduce more MMIO 
regions, you’ll write a simple function to allocate space from this region and map device 
memory to it. 

Note 

Exercise 1. Implement mmio_map_region() in kern/pmap.c. To see how this is used, look at 

the beginning of lapic_init() in kern/lapic.c. You’ll have to do the next exercise, too, 

before the tests for mmio_map_region() will run. 

 
Application Processor Bootstrap 

Before booting up APs, the BSP should first collect information about the multiprocessor 
system, such as the total number of CPUs, their APIC IDs and the MMIO address of the 
LAPIC unit. The mp_init() function in kern/mpconfig.c retrieves this information by reading 

the MP configuration table that resides in the BIOS’s region of memory. 

The boot_aps() function (in kern/init.c) drives the AP bootstrap process. APs start in real 

mode, much like how the bootloader started in boot/boot.S, so boot_aps() copies the AP 

entry code (kern/mpentry.S) to a memory location that is addressable in the real mode. 

Unlike with the bootloader, we have some control over where the AP will start executing 
code; we copy the entry code to 0x7000 (MPENTRY_PADDR), but any unused, page-aligned 

physical address below 640KB would work. 

After that, boot_aps() activates APs one after another, by sending STARTUP IPIs to the 

LAPIC unit of the corresponding AP, along with an initial CS:IP address at which the AP 

should start running its entry code (MPENTRY_PADDR in our case). The entry code 

in kern/mpentry.S is quite similar to that of boot/boot.S. After some brief setup, it puts the 

AP into protected mode with paging enabled, and then calls the C setup 
routine mp_main() (also in kern/init.c). boot_aps() waits for the AP to signal 

a CPU_STARTED flag in cpu_status field of its struct CpuInfo before going on to wake up the 

next one. 
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Note 

Exercise 2. Read boot_aps() and mp_main() in kern/init.c, and the assembly code 

in kern/mpentry.S. Make sure you understand the control flow transfer during the 

bootstrap of APs. Then modify your implementation of page_init() in kern/pmap.c to avoid 

adding the page at MPENTRY_PADDR to the free list, so that we can safely copy and run AP 

bootstrap code at that physical address. Your code should pass the 
updated check_page_free_list() test (but might fail the updated check_kern_pgdir() test, 

which we will fix soon). 

Note 

Answer the following questions in your answers-lab4.txt: 

1. Compare kern/mpentry.S side by side with boot/boot.S. Bearing in mind 

that kern/mpentry.S is compiled and linked to run above KERNBASE just like everything else 

in the kernel, what is the purpose of macro MPBOOTPHYS? Why is it necessary 

in kern/mpentry.S but not in boot/boot.S? In other words, what could go wrong if it were 

omitted in kern/mpentry.S? Hint: recall the differences between the link address and the 

load address that we have discussed in Lab 1. 

 
Per-CPU State and Initialization 

When writing a multiprocessor OS, it is important to distinguish between per-CPU state 
that is private to each processor, and global state that the whole system 
shares. kern/cpu.h defines most of the per-CPU state, including struct CpuInfo, which 

stores per-CPU variables. cpunum() always returns the ID of the CPU that calls it, which 

can be used as an index into arrays like cpus. Alternatively, the macro thiscpu is 

shorthand for the current CPU’s struct CpuInfo. 

Here is the per-CPU state you should be aware of: 

• Per-CPU kernel stack. Because multiple CPUs can trap into the kernel 
simultaneously, we need a separate kernel stack for each processor to prevent 
them from interfering with each other’s execution. The 
array percpu_kstacks[NCPU][KSTKSIZE] reserves space for NCPU’s worth of kernel 

stacks. 
 
In Lab 2, you mapped the physical memory that bootstack refers to as the BSP’s 

kernel stack just below KSTACKTOP. Similarly, in this lab, you will map each CPU’s 

kernel stack into this region with guard pages acting as a buffer between them. 
CPU 0’s stack will still grow down from KSTACKTOP; CPU 1’s stack will 

start KSTKGAP bytes below the bottom of CPU 0’s stack, and so 

on. inc/memlayout.h shows the mapping layout. 

 

• Per-CPU TSS and TSS descriptor. A per-CPU task state segment (TSS) is also 
needed in order to specify where each CPU’s kernel stack lives. The TSS for 
CPU i is stored in cpus[i].cpu_ts, and the corresponding TSS descriptor is defined 
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in the GDT entry gdt[(GD_TSS0 >> 3) + i]. The global ts variable defined 

in kern/trap.c will no longer be useful. 

• Per-CPU current environment pointer. Since each CPU can run different user 
process simultaneously, we redefined the symbol curenv to refer 

to cpus[cpunum()].cpu_env (or thiscpu->cpu_env), which points to the 

environment currently executing on the current CPU (the CPU on which the code 
is running). 
 

• Per-CPU system registers. All registers, including system registers, are private 
to a CPU. Therefore, instructions that initialize these registers, such 
as lcr3(), ltr(), lgdt(), lidt(), etc., must be executed once on each CPU. 

Functions env_init_percpu() and trap_init_percpu() are defined for this purpose. 

 

Note 

Exercise 3. Modify mem_init_mp() (in kern/pmap.c) to map per-CPU stacks starting 

at KSTACKTOP, as shown in inc/memlayout.h. The size of each stack is KSTKSIZE bytes 

plus KSTKGAP bytes of unmapped guard pages. Your code should pass the new check 

in check_kern_pgdir(). 

 

Note 

Exercise 4. The code in trap_init_percpu() (kern/trap.c) initializes the TSS and TSS 

descriptor for the BSP. It worked in Lab 3, but is incorrect when running on other CPUs. 
Change the code so that it can work on all CPUs. (Note: your new code should not use 
the global ts variable any more.) 

 

When you finish the above exercises, run JOS in QEMU with 4 CPUs 
using make qemu CPUS=4 (or make qemu-nox CPUS=4), you should see output like this: 

... 

Physical memory: 66556K available, base = 640K, extended = 65532K 

check_page_alloc() succeeded! 

check_page() succeeded! 

check_kern_pgdir() succeeded! 

check_page_installed_pgdir() succeeded! 

SMP: CPU 0 found 4 CPU(s) 

enabled interrupts: 1 2 

SMP: CPU 1 starting 

SMP: CPU 2 starting 

SMP: CPU 3 starting 

 



6 
 

Locking 

Our current code spins after initializing the AP in mp_main(). Before letting the AP get any 

further, we need to first address race conditions when multiple CPUs run kernel code 
simultaneously. The simplest way to achieve this is to use a big kernel lock. The big 
kernel lock is a single global lock that is held whenever an environment enters kernel 
mode, and is released when the environment returns to user mode. In this model, 
environments in user mode can run concurrently on any available CPUs, but no more 
than one environment can run in kernel mode; any other environments that try to enter 
kernel mode are forced to wait. 

kern/spinlock.h declares the big kernel lock, namely kernel_lock. It also 

provides lock_kernel() and unlock_kernel(), shortcuts to acquire and release the lock. You 

should apply the big kernel lock at four locations: 

• In i386_init(), acquire the lock before the BSP wakes up the other CPUs. 

• In mp_main(), acquire the lock after initializing the AP, and then call sched_yield() to 

start running environments on this AP. 

• In trap(), acquire the lock when trapped from user mode. To determine whether 

a trap happened in user mode or in kernel mode, check the low bits of the tf_cs. 

• In env_run(), release the lock right before switching to user mode. Do not do that 

too early or too late, otherwise you will experience races or deadlocks. 

Note 

Exercise 5. Apply the big kernel lock as described above, by calling 
lock_kernel() and unlock_kernel() at the proper locations. 

 
How to test if your locking is correct? You can’t at this moment! But you will be able to 
after you implement the scheduler in the next exercise. 

 

Note 

2. It seems that using the big kernel lock guarantees that only one CPU can run the 
kernel code at a time. Why do we still need separate kernel stacks for each CPU? 
Describe a scenario in which using a shared kernel stack will go wrong, even with the 
protection of the big kernel lock. 
 

Note 

Optional Challenge (no extra-credit)! The big kernel lock is simple and easy to use. 
Nevertheless, it eliminates all concurrency in kernel mode. Most modern operating 
systems use different locks to protect different parts of their shared state, an approach 
called fine-grained locking. Fine-grained locking can increase performance significantly, 
but is more difficult to implement and error-prone. If you are brave enough, drop the big 
kernel lock and embrace concurrency in JOS! 
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It is up to you to decide the locking granularity (the amount of data that a lock protects). 
As a hint, you may consider using spin locks to ensure exclusive access to these 
shared components in the JOS kernel:  

• The page allocator;  

• The console driver;  

• The scheduler;  

• The inter-process communication (IPC) state that you will implement in the part C. 

 

Round-Robin Scheduling 

Your next task in this lab is to change the JOS kernel so that it can alternate between 
multiple environments in “round-robin” fashion. Round-robin scheduling in JOS works as 
follows: 

• The function sched_yield() in the new kern/sched.c is responsible for selecting a 

new environment to run. It searches sequentially through the envs[] array in 

circular fashion, starting just after the previously running environment (or at the 
beginning of the array if there was no previously running environment), picks the 
first environment it finds with a status of ENV_RUNNABLE (see inc/env.h), and 

calls env_run() to jump into that environment. 

• sched_yield() must never run the same environment on two CPUs at the same 

time. It can tell that an environment is currently running on some CPU (possibly 
the current CPU) because that environment’s status will be ENV_RUNNING. 

• We have implemented a new system call for you, sys_yield(), which user 

environments can call to invoke the kernel’s sched_yield() function and thereby 

voluntarily give up the CPU to a different environment. 

Note 

Exercise 6. Implement round-robin scheduling in sched_yield() as described above. 

Don’t forget to modify syscall() to dispatch sys_yield(). 

Make sure to invoke sched_yield() in mp_main. 

Modify kern/init.c to create three (or more!) environments that all run the 

program user/yield.c. 

Run make qemu. You should see the environments switch back and forth between each 
other five times before terminating, like below. 

Test also with several CPUS: make qemu-nox CPUS=2. 

 
... 

Hello, I am environment 00001000. 

Hello, I am environment 00001001. 

Hello, I am environment 00001002. 

Back in environment 00001000, iteration 0. 
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Back in environment 00001001, iteration 0. 

Back in environment 00001002, iteration 0. 

Back in environment 00001000, iteration 1. 

Back in environment 00001001, iteration 1. 

Back in environment 00001002, iteration 1. 

... 
 

After the yield programs exit, there will be no runnable environment in the system, the 

scheduler should invoke the JOS kernel monitor. If any of this does not happen, then fix 
your code before proceeding. 

If you use CPUS=1 at this point, all environments should successfully run. Setting 
CPUS larger than 1 at this time may result in a general protection or kernel page fault 
once there are no more runnable environments due to unhandled timer interrupts (which 
we will fix below!). 
 

Note 

3. In your implementation of env_run() you should have called lcr3(). Before and after 

the call to lcr3(), your code makes references (at least it should) to the variable e, the 

argument to env_run. Upon loading the %cr3 register, the addressing context used by the 

MMU is instantly changed. But a virtual address (namely e) has meaning relative to a 

given address context–the address context specifies the physical address to which the 
virtual address maps. Why can the pointer e be dereferenced both before and after the 

addressing switch? 

4. Whenever the kernel switches from one environment to another, it must ensure the 
old environment’s registers are saved so they can be restored properly later. Why? 
Where does this happen? 
 

Note 

Optional Challenge (no extra credit)! Add a less trivial scheduling policy to the kernel, 
such as a fixed-priority scheduler that allows each environment to be assigned a priority 
and ensures that higher-priority environments are always chosen in preference to lower-
priority environments. If you’re feeling really adventurous, try implementing a Unix-style 
adjustable-priority scheduler or even a lottery or stride scheduler. (Look up “lottery 
scheduling” and “stride scheduling” in Google.) 

Write a test program or two that verifies that your scheduling algorithm is working 
correctly (i.e., the right environments get run in the right order). It may be easier to write 
these test programs once you have implemented fork() and IPC in parts B and C of this 

lab. 
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Note 

Optional Challenge (no extra credit)! The JOS kernel currently does not allow 
applications to use the x86 processor’s x87 floating-point unit (FPU), MMX instructions, 
or Streaming SIMD Extensions (SSE). Extend the Env structure to provide a save area 

for the processor’s floating point state, and extend the context switching code to save 
and restore this state properly when switching from one environment to another. 
The FXSAVE and FXRSTOR instructions may be useful, but note that these are not in the old 

i386 user’s manual because they were introduced in more recent processors. Write a 
user-level test program that does something cool with floating-point. 

 

System Calls for Environment Creation 

Although your kernel is now capable of running and switching between multiple user-
level environments, it is still limited to running environments that the kernel initially set 
up. You will now implement the necessary JOS system calls to allow user environments 
to create and start other new user environments. 

Unix provides the fork() system call as its process creation primitive. Unix fork() copies 

the entire address space of calling process (the parent) to create a new process (the 
child). The only differences between the two observable from user space are their 
process IDs and parent process IDs (as returned by getpid and getppid). In the 

parent, fork() returns the child’s process ID, while in the child, fork() returns 0. By 

default, each process gets its own private address space, and neither process’s 
modifications to memory are visible to the other. 

You will provide a different, more primitive set of JOS system calls for creating new 
user-mode environments. With these system calls you will be able to implement a Unix-
like fork() entirely in user space, in addition to other styles of environment creation. The 

new system calls you will write for JOS are as follows: 

• sys_exofork: 

This system call creates a new environment with an almost blank slate: nothing is 
mapped in the user portion of its address space, and it is not runnable. The new 
environment will have the same register state as the parent environment at the 
time of the sys_exofork call. In the parent, sys_exofork will return the envid_t of the 

newly created environment (or a negative error code if the environment allocation 
failed). In the child, however, it will return 0. (Since the child starts out marked as 
not runnable, sys_exofork will not actually return in the child until the parent has 

explicitly allowed this by marking the child runnable using….) 
 

• sys_env_set_status: 

Sets the status of a specified environment to ENV_RUNNABLE or ENV_NOT_RUNNABLE. This 

system call is typically used to mark a new environment ready to run, once its 
address space and register state has been fully initialized. 
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• sys_page_alloc: 

Allocates a page of physical memory and maps it at a given virtual address in a 
given environment’s address space. 
 

• sys_page_map: 

Copy a page mapping (not the contents of a page!) from one environment’s 
address space to another, leaving a memory sharing arrangement in place so 
that the new and the old mappings both refer to the same page of physical 
memory. 
 

• sys_page_unmap: 

Unmap a page mapped at a given virtual address in a given environment. 
 

For all of the system calls above that accept environment IDs, the JOS kernel supports 
the convention that a value of 0 means “the current environment.” This convention is 
implemented by envid2env() in kern/env.c. 

We have provided a very primitive implementation of a Unix-like fork() in the test 

program user/dumbfork.c. This test program uses the above system calls to create and 

run a child environment with a copy of its own address space. The two environments 
then switch back and forth using sys_yield as in the previous exercise. The parent exits 

after 10 iterations, whereas the child exits after 20. 

Note 

Exercise 7. Implement the system calls described above in kern/syscall.c. You will need 

to use various functions in kern/pmap.c and kern/env.c, particularly envid2env(). For now, 

whenever you call envid2env(), pass 1 in the checkperm parameter. Be sure you check for 

any invalid system call arguments, returning -E_INVAL in that case. Test your JOS kernel 

with user/dumbfork and make sure it works before proceeding. 

 

Note 

Optional Challenge (no extra-credit)! Add the additional system calls necessary 
to read all of the vital state of an existing environment as well as set it up. Then 
implement a user mode program that forks off a child environment, runs it for a while 
(e.g., a few iterations of sys_yield()), then takes a complete snapshot or checkpoint of 

the child environment, runs the child for a while longer, and finally restores the child 
environment to the state it was in at the checkpoint and continues it from there. Thus, 
you are effectively “replaying” the execution of the child environment from an 
intermediate state. Make the child environment perform some interaction with the user 
using sys_cgetc() or readline() so that the user can view and mutate its internal state, 

and verify that with your checkpoint/restart you can give the child environment a case of 
selective amnesia, making it “forget” everything that happened beyond a certain point. 
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This completes Part A of the lab; check your progress using make grade. If you are trying 

to figure out why a particular test case is failing, run ./grade-lab4 -v, which will show you 

the output of the kernel builds and QEMU runs for each test, until a test fails. When a 
test fails, the script will stop, and then you can inspect jos.out to see what the kernel 

actually printed. 

 

Part B: Copy-on-Write Fork 
As mentioned earlier, Unix provides the fork() system call as its primary process 

creation primitive. The fork() system call copies the address space of the calling 

process (the parent) to create a new process (the child). 

A naive implementation of fork() would be done by copying all data from the parent’s 

pages into new pages allocated for the child. This is essentially the same approach 
that dumbfork() takes. The copying of the parent’s address space into the child is the 

most expensive part of the fork() operation. 

However, a call to fork() is frequently followed almost immediately by a call to exec() in 

the child process, which replaces the child’s memory with a new program. This is what 
the the shell typically does, for example. In this case, the time spent copying the 
parent’s address space is largely wasted, because the child process will use very little 
of its memory before calling exec(). 

For this reason, later versions of Unix took advantage of virtual memory hardware to 
allow the parent and child to share the memory mapped into their respective address 
spaces until one of the processes actually modifies it. This technique is known as copy-
on-write. To do this, on fork() the kernel would copy the address space mappings from 

the parent to the child instead of the contents of the mapped pages, and at the same 
time mark the now-shared pages read-only. When one of the two processes tries to 
write to one of these shared pages, the process takes a page fault. At this point, the 
Unix kernel realizes that the page was really a “virtual” or “copy-on-write” copy, and so it 
makes a new, private, writable copy of the page for the faulting process. In this way, the 
contents of individual pages aren’t actually copied until they are actually written to. This 
optimization makes a fork() followed by an exec() in the child much cheaper: the child 

will probably only need to copy one page (the current page of its stack) before it 
calls exec(). 

In the next piece of this lab, you will implement a “proper” Unix-like fork() with copy-on-

write, as a user space library routine. Implementing fork() and copy-on-write support in 

user space has the benefit that the kernel remains much simpler and thus more likely to 
be correct. It also lets individual user-mode programs define their own semantics 
for fork(). A program that wants a slightly different implementation (for example, the 

expensive always-copy version like dumbfork(), or one in which the parent and child 

actually share memory afterward) can easily provide its own. 
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User-level page fault handling 

A user-level copy-on-write fork() needs to know about page faults on write-protected 

pages, so that’s what you’ll implement first. Copy-on-write is only one of many possible 
uses for user-level page fault handling. 

It’s common to set up an address space so that page faults indicate when some action 
needs to take place. For example, most Unix kernels initially map only a single page in 
a new process’s stack region, and allocate and map additional stack pages later “on 
demand” as the process’s stack consumption increases and causes page faults on 
stack addresses that are not yet mapped. A typical Unix kernel must keep track of what 
action to take when a page fault occurs in each region of a process’s space. For 
example, a fault in the stack region will typically allocate and map new page of physical 
memory. A fault in the program’s BSS region will typically allocate a new page, fill it with 
zeroes, and map it. In systems with demand-paged executables, a fault in the text 
region will read the corresponding page of the binary off of disk and then map it. 

This is a lot of information for the kernel to keep track of. Instead of taking the traditional 
Unix approach, you will decide what to do about each page fault in user space, where 
bugs are less damaging. This design has the added benefit of allowing programs great 
flexibility in defining their memory regions; you’ll use user-level page fault handling later 
for mapping and accessing files on a disk-based file system. 

 

Setting the Page Fault Handler 

In order to handle its own page faults, a user environment will need to register a page 
fault handler entrypoint with the JOS kernel. The user environment registers its page 
fault entrypoint via the new sys_env_set_pgfault_upcall system call. We have added a new 

member to the Env structure, env_pgfault_upcall, to record this information. 

Note 

Exercise 8. Implement the sys_env_set_pgfault_upcall system call. Be sure to enable 

permission checking when looking up the environment ID of the target environment, 
since this is a “dangerous” system call. 

 

Normal and Exception Stacks in User Environments 

During normal execution, a user environment in JOS will run on the normal user stack: 
its ESP register starts out pointing at USTACKTOP, and the stack data it pushes resides on 

the page between USTACKTOP-PGSIZE and USTACKTOP-1 inclusive. When a page fault occurs in 

user mode, however, the kernel will restart the user environment running a designated 
user-level page fault handler on a different stack, namely the user exception stack. In 
essence, we will make the JOS kernel implement automatic “stack switching” on behalf 
of the user environment, in much the same way that the x86 processor already 
implements stack switching on behalf of JOS when transferring from user mode to 
kernel mode! 
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The JOS user exception stack is also one page in size, and its top is defined to be at 
virtual address UXSTACKTOP, so the valid bytes of the user exception stack are 

from UXSTACKTOP-PGSIZE through UXSTACKTOP-1 inclusive. While running on this exception 

stack, the user-level page fault handler can use JOS’s regular system calls to map new 
pages or adjust mappings so as to fix whatever problem originally caused the page 
fault. Then the user-level page fault handler returns, via an assembly language stub, to 
the faulting code on the original stack. 

Each user environment that wants to support user-level page fault handling will need to 
allocate memory for its own exception stack, using the sys_page_alloc() system call 

introduced in part A. 

 

Invoking the User Page Fault Handler 

You will now need to change the page fault handling code in kern/trap.c to handle page 

faults from user mode as follows. We will call the state of the user environment at the 
time of the fault the trap-time state. 

If there is no page fault handler registered, the JOS kernel destroys the user 
environment with a message as before. Otherwise, the kernel sets up a trap frame on 
the exception stack that looks like a struct UTrapframe from inc/trap.h: 

                    <-- UXSTACKTOP 

trap-time esp 

trap-time eflags 

trap-time eip 

trap-time eax       start of struct PushRegs 

trap-time ecx 

trap-time edx 

trap-time ebx 

trap-time esp 

trap-time ebp 

trap-time esi 

trap-time edi       end of struct PushRegs 

tf_err (error code) 

fault_va            <-- %esp when handler is run 
 
 

The kernel then arranges for the user environment to resume execution with the page 
fault handler running on the exception stack with this stack frame; you must figure out 
how to make this happen. The fault_va is the virtual address that caused the page fault. 
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If the user environment is already running on the user exception stack when an 
exception occurs, then the page fault handler itself has faulted. In this case, you should 
start the new stack frame just under the current tf->tf_esp rather than at UXSTACKTOP. You 

should first push an empty 32-bit word, then a struct UTrapframe. 

To test whether tf->tf_esp is already on the user exception stack, check whether it is in 

the range between UXSTACKTOP-PGSIZE and UXSTACKTOP-1, inclusive. 

 

Note 

Exercise 9. Implement the code in page_fault_handler in kern/trap.c required to dispatch 

page faults to the user-mode handler. Be sure to take appropriate precautions when 
writing into the exception stack. (What happens if the user environment runs out of 
space on the exception stack?) 

 

User-mode Page Fault Entrypoint 

Next, you need to implement the assembly routine that will take care of calling the C 
page fault handler and resume execution at the original faulting instruction. This 
assembly routine is the handler that will be registered with the kernel 
using sys_env_set_pgfault_upcall(). 

 

Note 

Exercise 10. Implement the _pgfault_upcall routine in lib/pfentry.S. The interesting part 

is returning to the original point in the user code that caused the page fault. You’ll return 
directly there, without going back through the kernel. The hard part is simultaneously 
switching stacks and re-loading the EIP. 

Finally, you need to implement the C user library side of the user-level page fault 
handling mechanism. 
 

Note 

Exercise 11. Finish set_pgfault_handler() in lib/pgfault.c. 

 

Testing 
Run user/faultread (make run-faultread-nox). You should see: 

... 

[00000000] new env 00001000 

[00001000] user fault va 00000000 ip 0080003a 

TRAP frame ... 

[00001000] free env 00001000 
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Run user/faultdie (make run-faultdie-nox). You should see: 

... 

[00000000] new env 00001000 

i faulted at va deadbeef, err 6 

[00001000] exiting gracefully 

[00001000] free env 00001000 

 

Run user/faultalloc (make run-faultalloc-nox).. You should see: 

... 

[00000000] new env 00001000 

fault deadbeef 

this string was faulted in at deadbeef 

fault cafebffe 

fault cafec000 

this string was faulted in at cafebffe 

[00001000] exiting gracefully 

[00001000] free env 00001000 

 

If you see only the first “this string” line, it means you are not handling recursive page 
faults properly. 

 

Run user/faultallocbad (make run-faultallocbad-nox). You should see: 

... 

[00000000] new env 00001000 

[00001000] user_mem_check assertion failure for va deadbeef 

[00001000] free env 00001000 

Make sure you understand why user/faultalloc and user/faultallocbad behave differently. 

 

Note 

Optional Challenge (no extra credit)! Extend your kernel so that not only page faults, 
but all types of processor exceptions that code running in user space can generate, can 
be redirected to a user-mode exception handler. Write user-mode test programs to test 
user-mode handling of various exceptions such as divide-by-zero, general protection 
fault, and illegal opcode. 

 

 



16 
 

Implementing Copy-on-Write Fork 

You now have the kernel facilities to implement copy-on-write fork() entirely in user 

space. 

We have provided a skeleton for your fork() in lib/fork.c. Like dumbfork(), fork() should 

create a new environment, then scan through the parent environment’s entire address 
space and set up corresponding page mappings in the child. The key difference is that, 
while dumbfork() copied pages, fork() will initially only copy page mappings. fork() will 

copy each page only when one of the environments tries to write it. 

The basic control flow for fork() is as follows: 

1. The parent installs pgfault() as the C-level page fault handler, using 

the set_pgfault_handler() function you implemented above. 

 
2. The parent calls sys_exofork() to create a child environment. 

 
3. For each writable or copy-on-write page in its address space below UTOP, the 

parent calls duppage, which should map the page copy-on-write into the address 

space of the child and then remap the page copy-on-write in its own address 
space. duppage sets both PTEs so that the page is not writeable, and to 

contain PTE_COW in the “avail” field to distinguish copy-on-write pages from genuine 

read-only pages. 
 
The exception stack is not remapped this way, however. Instead you need to 
allocate a fresh page in the child for the exception stack. Since the page fault 
handler will be doing the actual copying and the page fault handler runs on the 
exception stack, the exception stack cannot be made copy-on-write: who would 
copy it? 
 
fork() also needs to handle pages that are present, but not writable or copy-on-

write. 
 

4. The parent sets the user page fault entrypoint for the child to look like its own. 
 

5. The child is now ready to run, so the parent marks it runnable. 

Each time one of the environments writes a copy-on-write page that it hasn’t yet written, 
it will take a page fault. Here’s the control flow for the user page fault handler: 

1. The kernel propagates the page fault to _pgfault_upcall, which 

calls fork()’s pgfault() handler. 

2. pgfault() checks that the fault is a write (check for FEC_WR in the error code) and 

that the PTE for the page is marked PTE_COW. If not, panic. 

3. pgfault() allocates a new page mapped at a temporary location and copies the 

contents of the faulting page into it. Then the fault handler maps the new page at 
the appropriate address with read/write permissions, in place of the old read-only 
mapping. 
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The user-level lib/fork.c code must consult the environment’s page tables for several of 

the operations above (e.g., that the PTE for a page is marked PTE_COW). The kernel maps 

the environment’s page tables at UVPT exactly for this purpose. It uses a clever mapping 

trick to make it to make it easy to lookup PTEs for user code. lib/entry.S sets 

up uvpt and uvpd so that you can easily lookup page-table information in lib/fork.c. 

Note 

Exercise 12. Implement fork, duppage and pgfault in lib/fork.c. 

Test your code with the forktree program. It should produce the following messages, 

with interspersed ‘new env’, ‘free env’, and ‘exiting gracefully’ messages. The messages 
may not appear in this order, and the environment IDs may be different. 

1000: I am '' 

1001: I am '0' 

2000: I am '00' 

2001: I am '000' 

1002: I am '1' 

3000: I am '11' 

3001: I am '10' 

4000: I am '100' 

1003: I am '01' 

5000: I am '010' 

4001: I am '011' 

2002: I am '110' 

1004: I am '001' 

1005: I am '111' 

1006: I am '101' 

This ends part B. As usual, you can grade your submission with make grade. 

 

Part C: Preemptive Multitasking and Inter-Process 
communication (IPC) 
In the final part of lab 4 you will modify the kernel to preempt uncooperative 
environments and to allow environments to pass messages to each other explicitly. 

Clock Interrupts and Preemption 

Run the user/spin test program. This test program forks off a child environment, which 

simply spins forever in a tight loop once it receives control of the CPU. Neither the 
parent environment nor the kernel ever regains the CPU. This is obviously not an ideal 
situation in terms of protecting the system from bugs or malicious code in user-mode 
environments, because any user-mode environment can bring the whole system to a 

https://pdos.csail.mit.edu/6.828/2014/labs/lab4/uvpt.html
https://pdos.csail.mit.edu/6.828/2014/labs/lab4/uvpt.html
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halt simply by getting into an infinite loop and never giving back the CPU. In order to 
allow the kernel to preempt a running environment, forcefully retaking control of the 
CPU from it, we must extend the JOS kernel to support external hardware interrupts 
from the clock hardware. 

Interrupt discipline 

External interrupts (i.e., device interrupts) are referred to as IRQs. There are 16 
possible IRQs, numbered 0 through 15. The mapping from IRQ number to IDT entry is 
not fixed. pic_init in picirq.c maps IRQs 0-15 to IDT entries IRQ_OFFSET through   

IRQ_OFFSET+15. 

In inc/trap.h, IRQ_OFFSET is defined to be decimal 32. Thus the IDT entries 32-47 

correspond to the IRQs 0-15. For example, the clock interrupt is IRQ 0. Thus,  

IDT[IRQ_OFFSET+0] (i.e., IDT[32]) contains the address of the clock’s interrupt handler 

routine in the kernel. This IRQ_OFFSET is chosen so that the device interrupts do not 

overlap with the processor exceptions, which could obviously cause confusion. (In fact, 
in the early days of PCs running MS-DOS, the IRQ_OFFSET effectively was zero, which 

indeed caused massive confusion between handling hardware interrupts and handling 
processor exceptions!) 

In JOS, we make a key simplification compared to xv6 Unix. External device interrupts 
are always disabled when in the kernel (and, like xv6, enabled when in user space). 
External interrupts are controlled by the FL_IF flag bit of the %eflags register 

(see inc/mmu.h). When this bit is set, external interrupts are enabled. While the bit can be 

modified in several ways, because of our simplification, we will handle it solely through 
the process of saving and restoring %eflags register as we enter and leave user mode. 

You will have to ensure that the FL_IF flag is set in user environments when they run so 

that when an interrupt arrives, it gets passed through to the processor and handled by 
your interrupt code. Otherwise, interrupts are masked, or ignored until interrupts are re-
enabled. We masked interrupts with the very first instruction of the bootloader, and so 
far we have never gotten around to re-enabling them. 
 

Note 

Exercise 13. Modify kern/trapentry.S and kern/trap.c to initialize the appropriate entries 

in the IDT and provide handlers for IRQs 0 through 15. Then modify the code 
in env_alloc() in kern/env.c to ensure that user environments are always run with 

interrupts enabled. 

The processor never pushes an error code or checks the Descriptor Privilege Level 
(DPL) of the IDT entry when invoking a hardware interrupt handler. You might want to 
re-read section 9.2 of the 80386 Reference Manual, or section 5.8 of the IA-32 Intel 
Architecture Software Developer’s Manual, Volume 3, at this time. 

When you finish this exercise, please do not forget to remove a comment in the 
kern/sched.c: 

// LAB 4: 

http://www.logix.cz/michal/doc/i386/
https://web.engr.oregonstate.edu/~songyip/Teaching/CS444/IA32-3A.pdf
https://web.engr.oregonstate.edu/~songyip/Teaching/CS444/IA32-3A.pdf
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// Uncomment the following line after completing exercise 13 

//”sti” 

After doing this exercise, if you run your kernel with any test program that runs for a 
non-trivial length of time (e.g., spin), you should see the kernel print trap frames for 

hardware interrupts. While interrupts are now enabled in the processor, JOS isn’t yet 
handling them, so you should see it misattribute each interrupt to the currently running 
user environment and destroy it. Eventually it should run out of environments to destroy 
and drop into the monitor. 

 

Handling Clock Interrupts 

In the user/spin program, after the child environment was first run, it just spun in a loop, 

and the kernel never got control back. We need to program the hardware to generate 
clock interrupts periodically, which will force control back to the kernel where we can 
switch control to a different user environment. 

The calls to lapic_init and pic_init (from i386_init in init.c), which we have written for 

you, set up the clock and the interrupt controller to generate interrupts. You now need to 
write the code to handle these interrupts. 
 

Note 

Exercise 14. Modify the kernel’s trap_dispatch() function so that it calls sched_yield() to 

find and run a different environment whenever a clock interrupt takes place. 

You should now be able to get the user/spin test to work: the parent environment should 

fork off the child, sys_yield() to it a couple times but in each case regain control of the 

CPU after one time slice, and finally kill the child environment and terminate gracefully. 

 
This is a great time to do some regression testing. Make sure that you haven’t broken 
any earlier part of that lab that used to work (e.g. forktree) by enabling interrupts. Also, 

try running with multiple CPUs using make CPUS=2 target. You should also be able to 

pass stresssched now. Run make grade to see for sure. You should now get a total score 

of 65/80 points on this lab. 
 

Inter-Process communication (IPC) 

(Technically in JOS this is “inter-environment communication” or “IEC”, but everyone 
else calls it IPC, so we’ll use the standard term.) 

We’ve been focusing on the isolation aspects of the operating system, the ways it 
provides the illusion that each program has a machine all to itself. Another important 
service of an operating system is to allow programs to communicate with each other 
when they want to. It can be quite powerful to let programs interact with other programs. 
The Unix pipe model is the canonical example. 
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There are many models for interprocess communication. Even today there are still 
debates about which models are best. We won’t get into that debate. Instead, we’ll 
implement a simple IPC mechanism and then try it out. 
 

IPC in JOS 

You will implement a few additional JOS kernel system calls that collectively provide a 
simple interprocess communication mechanism. You will implement two system 
calls, sys_ipc_recv and sys_ipc_try_send. Then you will implement two library 

wrappers ipc_recv and ipc_send. 

The “messages” that user environments can send to each other using JOS’s IPC 
mechanism consist of two components: a single 32-bit value, and optionally a single 
page mapping. Allowing environments to pass page mappings in messages provides an 
efficient way to transfer more data than will fit into a single 32-bit integer, and also 
allows environments to set up shared memory arrangements easily. 
 

Sending and Receiving Messages 

To receive a message, an environment calls sys_ipc_recv. This system call de-schedules 

the current environment and does not run it again until a message has been received. 
When an environment is waiting to receive a message, any other environment can send 
it a message - not just a particular environment, and not just environments that have a 
parent/child arrangement with the receiving environment. In other words, the permission 
checking that you implemented in Part A will not apply to IPC, because the IPC system 
calls are carefully designed so as to be “safe”: an environment cannot cause another 
environment to malfunction simply by sending it messages (unless the target 
environment is also buggy). 

To try to send a value, an environment calls sys_ipc_try_send with both the receiver’s 

environment id and the value to be sent. If the named environment is actually receiving 
(it has called sys_ipc_recv and not gotten a value yet), then the send delivers the 

message and returns 0. Otherwise the send returns -E_IPC_NOT_RECV to indicate that the 

target environment is not currently expecting to receive a value. 

A library function ipc_recv in user space will take care of calling sys_ipc_recv and then 

looking up the information about the received values in the current 
environment’s struct Env. 

Similarly, a library function ipc_send will take care of repeatedly calling sys_ipc_try_send  

until the send succeeds. 
 

Transferring Pages 

When an environment calls sys_ipc_recv with a valid dstva parameter (below UTOP), the 

environment is stating that it is willing to receive a page mapping. If the sender sends a 
page, then that page should be mapped at dstva in the receiver’s address space. If the 

receiver already had a page mapped at dstva, then that previous page is unmapped. 
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When an environment calls sys_ipc_try_send with a valid srcva (below UTOP), it means the 

sender wants to send the page currently mapped at srcva to the receiver, with 

permissions perm. After a successful IPC, the sender keeps its original mapping for the 

page at srcva in its address space, but the receiver also obtains a mapping for this same 

physical page at the dstva originally specified by the receiver, in the receiver’s address 

space. As a result this page becomes shared between the sender and receiver. 

If either the sender or the receiver does not indicate that a page should be transferred, 
then no page is transferred. After any IPC the kernel sets the new field env_ipc_perm in 

the receiver’s Env structure to the permissions of the page received, or zero if no page 

was received. 
 

Implementing IPC 

Note 

Exercise 15. Implement sys_ipc_recv and sys_ipc_try_send in kern/syscall.c. Read the 

comments on both before implementing them, since they have to work together. When 
you call envid2env in these routines, you should set the checkperm flag to 0, meaning that 

any environment is allowed to send IPC messages to any other environment, and the 
kernel does no special permission checking other than verifying that the target envid is 
valid. 

Then implement the ipc_recv and ipc_send functions in lib/ipc.c. 

Use the user/pingpong and user/primes functions to test your IPC mechanism. user/primes  

will generate for each prime number a new environment until JOS runs out of 
environments. You might find it interesting to read user/primes.c to see all the forking and 

IPC going on behind the scenes. 
 

Note 

Optional Challenge (no extra-credit)! Why does ipc_send have to loop? Change the 

system call interface so it doesn’t have to. Make sure you can handle multiple 
environments trying to send to one environment at the same time. 

 

This ends part C. Make sure you pass all of the make grade tests and don’t forget to 
write up your answers to the questions in answers-lab4.txt, and tag your commit as lab4-

final. Lastly, don’t forget to run the check_submission.sh script to verify whether you have 

submitted successfully! 


