CS 444/544 OS |1
Lab Tutorial #7

Multiprocessor Support and Cooperative Multitasking
(Lab4 — Part A)

Acknowledgement: Slides drawn heavily from Yeongjin Jiang

Getting Started

 Checkout to lab4 branch
* Merge lab3 into lab4

* Solve merge conflicts, if there is any

Multiprocessor Support

* Symmetric Multiprocessing Environment (SMP)
e All CPUs are equivalent
 Core0,1, 2,3, ..., all can access hardware resource, memory, etc.

* |[n boot
* We boot with one CPU — Bootstrapping processor (BSP), which is core 0
e BSP will initialize lab1 (monitor), lab2 (vm), lab3 (env), and then
 JOS will wake up other processes (in lab4)

* APIC (Advanced Programmable Interrupt Controller)

* Local APIC — used for getting information about how many cores available, what is
current CPU, and control CPUs to run code per each CPU, etc.

* kern/lapic.c

Exercise 1: mmio _map region(pa, size)

Exercise 1. Implement mmio map region() in kern/pmap.c . To see how thisis used, look at the beginning of 1apic_init() in

kern/lapic.c . You'll have to do the next exercise, too, before the tests for mmio map region() will run.

 Map memory for Memory-Mapped 10 (MMIO)

* Similarto boot map region / region alloc

* Map [pa, patsize) to [va, va + size)

* Where va starts with MMIOBASE

Exercise 1: mmio _map region(pa, size)

e Corner cases

* pa/pa+len are not aligned with page size
* pa start = ROUNDDOWN (pa, PGSIZE)
* pa end = ROUNDUP (pat+len, PGSIZE)
* pa offset = pa & Oxfff //getsthe last12-bit of the address

* Map [pa start, pa end) to

* va start = base
* new base = va start + pa end - pa start
* Return?

* return old base + pa off;
* Whyaddpa off?

* pa might not be page aligned, but it must return the corresponding virtual address to that
physical address (with offset)

Exercise 1: mmio _map region(pa, size)

* What is PTE_PCD, PTE_PWT?

* PTE_PCD
* Page Cache Disable
* |f this bit is set, CPU ignores caching memory blocks from this page
e Required for MMIO (caching will prevent direct access to hardware!)

* PTE_ PWT
* Page Write Through
e If this bit is set, CPU immediately forward write to memory/hardware
e Required for MMIO (non-write through would delay hardware access!)

Exercise 2: Waking up Application Processors

Exercise 2. Read boot aps() and mp main() in kern/init.c ,and the assembly codein kern/mpentry.s . Make sure you
understand the control flow transfer during the bootstrap of APs. Then modify your implementation of page init() in

kern/pmap.c to avoid adding the page at MPENTRY PADDR to the free list, so that we can safely copy and run AP bootstrap code
at that physical address. Your code should pass the updated check page free 1ist() test (but might fail the updated

check kern pgdir() test, which we will fix soon).

Exercise 2: Waking up Application Processors

* What it does?
e Copy code for waking up

APs to MPENTRY_PADDR
* Algorithm
e code = vaddr(0x7000)

* Move code at
mpentry_start to 0x7000

e Run as the bootloader at
Ox7c00

static void
boot_aps(void)

{

extern unsigned char mpentry_start[], mpentry end[];
void *code;
struct Cpulnfo *c;

code = KADDR(MPENTRY_PADDR) ;
memmove (code, mpentry start, mpentry _end - mpentry start);

for (c = cpus; ¢ < cpus + ncpu; c++) {
if (c == cpus + cpunum())
continue;

mpentry kstack = percpu_kstacks[c - cpus] + KSTKSIZE;

lapic_startap(c->cpu_id, PADDR(code));

while(c->cpu_status != CPU_STARTED)

Exercise 2: Waking up Application Processors

* What'’s at 0x7000?
* Looks very similar to bootloader

 Why?
* CPU 0 enabled protected mode
* CPU 0 enabled paging

e What about others??
- CPUTZ, 2,3,..7
e Are in the real mode!

Exercise 2: Waking up Application Processors

e So we need to enable
* Protected mode

.code32

Make sure to mark 0x7000 is in-use in page_init

* Enable paging

e Set stack (mpentry_kstack)
* Callmp main ()

Exercise 2: Waking up Application Processors

static void

. boot Ld
* Algorithm AOSLIE
e code = vaddr(Ox7000) sﬁgrgcgz:gned char mpentry start[], mpentry end[];
kew
« Move code at mpentry start [l
to 0x7000
code = KADDR(MPENTRY_PADDR) ;
* For each core in CPU: memmove (code, mpentry_start, mpentry_end - mpentry_start);
* Set separated kernel stack
. . for (c = cpus; ¢ < cpus + ncpu; c++) {
Let lapic to run 0x7000 on the 0 6 e e o Gy
current core continue;
* Wait until it changes
cpu_status to started mpentry kstack = percpu_kstacks[c - cpus] + KSTKSIZE;

* Inmp main ()

lapic_startap(c->cpu_id, PADDR(code));

So it initialize one core, wait, one core, wait, ... while(c->cpu_status != CPU_STARTED)

Exercise 3&4: Per-CPU Init

* Kernel Stack
* Use percpu_kstacks

* TSS
* Update GDT

¢* curenv
* thiscpu->cpu_env

* Set cr3, tr, gdt, idt..

¢ Per-CPU kernel stack. Because multiple CPUs can trap into the kernel simultaneously, we need a separate kernel stack for

each processor to prevent them from interfering with each other’s execution. The array percpu_kstacks [NCPU] [KSTKSIZE]

reserves space for NCPU'’s worth of kernel stacks.

In Lab 2, you mapped the physical memory that bootstack refersto as the BSP’s kernel stack just below kstacktor . Similarly,
in this lab, you will map each CPU'’s kernel stack into this region with guard pages acting as a buffer between them. CPU Q’s
stack will still grow down from «ksTacktor ; CPU 1's stack will start ksTkcap bytes below the bottom of CPU O's stack, and so
on. inc/memlayout.h showsthe mapping layout.

Per-CPU TSS and TSS descriptor. A per-CPU task state segment (TSS) is also needed in order to specify where each CPU'’s
kernel stack lives. The TSS for CPU iis stored in cpus[i].cpu_ts ,and the corresponding TSS descriptor is defined in the GDT
entry gdt[(GD_Tss@ >> 3) + i] . Theglobal ts variable definedin kern/trap.c will no longer be useful.

Per-CPU current environment pointer. Since each CPU can run different user process simultaneously, we redefined the
symbol curenv toreferto cpusicpunum()].cpu_env (Or thiscpu->cpu_env), which points to the environment currently

executing on the current CPU (the CPU on which the code is running).
Per-CPU system registers. All registers, including system registers, are private to a CPU. Therefore, instructions that initialize
theseregisters,suchas 1cr3() , 1tr(), 1gdt() , 1idt() ,etc, must be executed once on each CPU. Functions

env_init_percpu() and trap_init_percpu() aredefined for this purpose.

12

Exercise 3: Per-CPU Init, Set Kernel Stack

* inc/memlayout.h

* i-th CPU'’s stack

* VA: KSTACKTOP —i * (KSTKSIZE+KSTKGAP)
* PA: PADDR(&percpu_kstacks]i])

* Use boot_map region to map those region

13

Exercise 4: Per-CPU Init, trap init percpu

i Lab 3 void
trap_init_percpu(void)

{

e Set values of TSS ts.ts_espd = KSTACKTOP;
ts.ts_ssO = GD KD;
ts.ts _iomb = sizeof(struct Taskstate);

gdt[GD TSSO >> 3] = SEG16(STS_T32A, (uint32 t) (&ts),
sizeof(struct Taskstate) - 1, 0);
* Set TSS to GDT gdt[GD TSSO >> 3].sd s = 0;

* Load TSS 1tr(GD_TSSO);

We need to change this to initialize
e Load IDT lidt(&idt_pd); each processor!!

Exercise 4: Per-CPU Init, trap init percpu

e lab 4 o
e Replace ts with Erap_lnlt_percpu(vom)

* thiscpu->cpu_ts

ts.ts_esp0 = KSTACKTOP;
ts.ts_ssO = GD KD;
ts.ts_iomb = sizeof(struct Taskstate);

e Access gdt via

* gdt[(GD_TSSO >> 3) + cpunum()] gdt[GD TSSO >> 3] = SEG16(STS T32A, (uint32 t) (&ts),
sizeof(struct Taskstate) - 1, 0);
gdt[GD TSSO >> 3].sd s = 0;

* Load TR per each CPU
e |tr(GD_TSSO + (cpunum() << 3))
1tr(GD_TSSO) ;

* Load IDT (we use the same IDT)
e lidt(&idt_pd) lidt(&idt_pd);

Exercise 5: Lock

* We will have concurrent kernel execution, and to avoid interference
of having multiple execution in kernel, we use mutex (Lock/Unlock) to
define the entire kernel execution as a critical section

e Add lock_kernel and unlock_kernel in these locations...

e In i386_init() ,acquire the lock before the BSP wakes up the other CPUs.
e In mp main() ,acquire the lock after initializing the AP, and then call sched yield() tostartrunningenvironments on this AP.
e In trap() ,acquire the lock when trapped from user mode. To determine whether a trap happened in user mode or in kernel

mode, check the low bits of the tf cs .
e In env _run() ,release the lock right before switching to user mode. Do not do that too early or too late, otherwise you will

experience races or deadlocks.

Exercise 5. Apply the big kernel lock as described above, by calling 1ock kernel() and unlock kernel() atthe proper
16

locations.

Exercise 5: Lock

* In i386_init (kern/init.c)

lock kernel();

e In 386 init() ,acquirethe lock before the BSP wakes up the other CPUs.

e In mp main() ,acquire the lock after initializing the AP, and then call sched yield() tostartrunningenvironments on this AP.

e In trap() ,acquirethe lock when trapped from user mode. To determine whether a trap happened in user mode or in kernel
mode, check the low bits of the tf cs .

e In env run() ,release the lock right before switching to user mode. Do not do that too early or too late, otherwise you will

experience races or deadlocks.

Exercise 5. Apply the big kernel lock as described above, by calling 1ock kernel() and unlock kernel() atthe proper
17

locations.

Exercise 5: Lock

* In mp_main (kern/init.c)

lock kernel();
sched yield();

e In mp main() ,acquire the lock after initializing the AP, and then call sched yield() tostartrunningenvironments on this AP.
e In trap() ,acquirethe lock when trapped from user mode. To determine whether a trap happened in user mode or in kernel

mode, check the low bits of the tf cs .
e In env run() ,release the lock right before switching to user mode. Do not do that too early or too late, otherwise you will

experience races or deadlocks.

Exercise 5. Apply the big kernel lock as described above, by calling 1ock kernel() and unlock kernel() atthe proper
18

locations.

Exercise 5: Lock

° |In trap (kern/trap_c) if ((tf->tf cs & 3) == 3) {

lock kernel();
assert(curenv);

e In 386 init() ,acquirethe lock before the BSP wakes up the other CPUs.

e In mp main() ,acquire the lock after initializing the AP, and then call sched yield() tostartrunningenvironments on this AP.

e In trap() ,acquirethe lock when trapped from user mode. To determine whether a trap happened in user mode or in kernel
mode, check the low bits of the tf cs .

e In env run() ,release the lock right before switching to user mode. Do not do that too early or too late, otherwise you will

experience races or deadlocks.

Exercise 5. Apply the big kernel lock as described above, by calling 1ock kernel() and unlock kernel() atthe proper
19

locations.

Exercise 5: Lock

* In env_run (kern/env.c)
* Insert unlock kernel before env_pop_tf

unlock kernel();

env_pop_tf(&e->env_tf);

e In i386 init() ,acquire the lock before the BSP wakes up the other CPUs.
e In mp main() ,acquire the lock after initializing the AP, and then call sched yield() tostartrunningenvironments on this AP.
e In trap() ,acquirethe lock when trapped from user mode. To determine whether a trap happened in user mode or in kernel

mode, check the low bits of the tf cs .
e In env run() ,release the lock right before switching to user mode. Do not do that too early or too late, otherwise you will

experience races or deadlocks.

Exercise 5. Apply the big kernel lock as described above, by calling 1ock kernel() and unlock kernel() atthe proper
20

locations.

Exercise 6: Round-Robin Scheduling

* We will use sched_yield() to enable cooperative multitasking

 Remember, cooperative multitasking works with voluntary yield from
processes...

 When yield happens,

* We will run the next available environment (this is round-robin!)

Exercise 6: Round-Robin Scheduling

* We will use sched_yield() to enable cooperative multitasking

 Remember, cooperative multitasking works with voluntary yield from
processes...

 When yield happens,

* We will run the next available environment (this is round-robin!)

22

Exercise 6: Round-Robin Scheduling

* Tips

* How to get the current envid?
e curenv->env_id

 How to loop over the envs array?
* envs[ENVX(curenv->env_id)] // this is current env
* envs[(ENVX(curenv->env_id) + i) % NENV] // this will run a circular loop

e What if curenv == NULL?

e Set env_id as O...
e Call env_run if you found a runnable environment

Exercise 6: Round-Robin Scheduling

 Also edit syscall.c (kern/syscall.c) to dispatch sched_vyield()

case SYS yield:
{

sys_yield();
return 0;

}

24

Exercise 7: Implement syscalls For

New Environment Creation

Exercise 7. Implement the system calls described above in kern/syscall.c . You will need to use various functions in

kern/pmap.c and kern/env.c , particularly envid2env () . For now, whenever you call envid2env() , pass linthe checkperm
parameter. Be sure you check for any invalid system call arguments, returning -t 1nvAL inthat case. Test your JOS kernel
with user/dumbfork and make sure it works before proceeding.

Implement 5 system calls to support new environment creation!

sys exofork
sys_env_set status
sys page alloc

SyS page map

SyS page unmap

25

Exercise 7: Implement syscalls For
New Environment Creation

* sys_exofork()
» System call for support fork (in user space)

e What it should do?

® sys exofork :

This system call creates a new environment with an almost blank slate: nothing is mapped in the user portion of its address
space, and it is not runnable. The new environment will have the same register state as the parent environment at the time
of the sys exofork call.Inthe parent, sys exofork will returnthe envid t of the newly created environment (or a
negative error code if the environment allocation failed)l In the child, however, it will return O.I(Since the child starts out
marked as not runnable, sys exofork will not actually return in the child until the parent has explicitly allowed this by
marking the child runnable using....)

26

Exercise 7: Implement syscalls For
New Environment Creation

* Allocating a new environment
* Struct Env *e;

*env alloc(&e, curenv ? curenv->env 1id : 0)
* We can set the parent env_id O if there is no curenv...

static envid t
sys_exofork(void)

{

Exercise 7: Implement syscalls For
New Environment Creation

* Set new env status as ENV_NOT_RUNNABLE
* e->env status = ENV NOT RUNNABLE

* Copy registers
* e->env tf = curenv->env tf // trapframe stores registers

e Set child return value as 0?
*e->env tf.tf regs.reg eax = 0

static envid_t

sys_exofork(void)

{

Exercise 7: Implement syscalls For
New Environment Creation

* sys_env_set_status()

* |If status is not either of ENV_RUNNABLE or ENV_NOT_RUNNABLE
* Return—E_INVAL

static int
sys_env_set status(envid t envid, int status)

Exercise 7: Implement syscalls For
New Environment Creation

* sys_env_set_status()

* You may use envid2env(envid, struct Env **store, checkperm) to check if
envid is valid or not

* Read the function envid2env; this checks if:

e = &envs[ENVX(envid)];

if (e->env_status == ENV_FREE || e->env_id != envid) {
*env_store = 0;
return -E_BAD_ENV;

}

if (checkperm && e != curenv && e->env_parent_id != curenv->env_id) {
*env_store = 0;
return -E_BAD ENV;

}

30

Exercise 7: Implement syscalls For
New Environment Creation

e sys page alloc(envid, void *va, int perm)
* Map a page at the virtual address va with permission perm

* Usepage alloc (ALLOC ZERO)to get a free physical page as
e struct PagelInfo *pp

* Usepage insert (e->env pgdir, pp, va, perm)tomap it!

static int
sys_page_alloc(envid t envid, void *va, int perm)

{

Exercise 7: Implement syscalls For
New Environment Creation

e sys page alloc(envid, void *va, int perm)

* Tips
* How to check perm only includes bits in PTE_SYSCALL?

if ((perm & Oxfff) & (~PTE_SYSCALL))
return -E INVAL;
* Why?

e perm&Oxfff = get lower 12 bit permission flag
e ~PTE_SYSCALL = negation of PTE_SYSCALL; bits are 1 except for allowed flags
e If any of bitis 1, then perm has a flag other than sets in PTE_SYSCALL

Exercise 7: Implement syscalls For
New Environment Creation

e sys page alloc(envid, void *va, int perm)

* Tips
* How to check va is page aligned?
if ((uintptr_t)va & Oxfff)

return -E_INVAL;

* Why?
o va&Oxfff = offset
* |t checks if offset == 0 or not...

33

Exercise 7: Implement syscalls For
New Environment Creation

e sys page alloc(envid, void *va, int perm)
* Tips

 How to check envid is valid?
* Use envid2env() with checkperm =1

Exercise 7: Implement syscalls For
New Environment Creation

e sys_page_map(srcenvid, srcva, dstenvid, dstva, perm)
* Map the physical page that backs srcva to dstva

* You have to implement many checks, use the tricks with &0xfff and ~
 Alsouse envid2env tocheck srcenvidand dstenvid

* How to map a page from src to dst?
* Use page lookup togetthe struct PageInfo *pp of srcva
* Thisis a_physical page
* Use page insert tomap that physical page to dstva

Also check the permission in the pte of srcva if it

is allowed for write or not (PTE_W)

Exercise 7: Implement syscalls For
New Environment Creation

e sys_page_unmap(envid, va)
* This unmaps the virtual address at va

* Check va and envid using similar tricks that we’ve done for other
syscalls

* Use page remove tounmap the mapping

Part-A Result

lumbfork: (1.8s)

art A score: 5/5

* |If you are getting any assert error from pmap.c

e Please check if your implementation for mmio_map_region and page_init for
excluding MPENTRY_PADDR

* If you are getting any panic from user/kernel
* Check if you edited kern/syscall.c to dispatch each system calls in syscall()
* Fill the switch-case statement!

e Check if you returned correct values to user environment

* Check syscall return
* Check if you set the trapframe’s eax to O for sys_exofork

37

	Slide 1: CS 444/544 OS II Lab Tutorial #7
	Slide 2: Getting Started
	Slide 3: Multiprocessor Support
	Slide 4: Exercise 1: mmio_map_region(pa, size)
	Slide 5: Exercise 1: mmio_map_region(pa, size)
	Slide 6: Exercise 1: mmio_map_region(pa, size)
	Slide 7: Exercise 2: Waking up Application Processors
	Slide 8: Exercise 2: Waking up Application Processors
	Slide 9: Exercise 2: Waking up Application Processors
	Slide 10: Exercise 2: Waking up Application Processors
	Slide 11: Exercise 2: Waking up Application Processors
	Slide 12: Exercise 3&4: Per-CPU Init
	Slide 13: Exercise 3: Per-CPU Init, Set Kernel Stack
	Slide 14: Exercise 4: Per-CPU Init, trap_init_percpu
	Slide 15: Exercise 4: Per-CPU Init, trap_init_percpu
	Slide 16: Exercise 5: Lock
	Slide 17: Exercise 5: Lock
	Slide 18: Exercise 5: Lock
	Slide 19: Exercise 5: Lock
	Slide 20: Exercise 5: Lock
	Slide 21: Exercise 6: Round-Robin Scheduling
	Slide 22: Exercise 6: Round-Robin Scheduling
	Slide 23: Exercise 6: Round-Robin Scheduling
	Slide 24: Exercise 6: Round-Robin Scheduling
	Slide 25: Exercise 7: Implement syscalls For New Environment Creation
	Slide 26: Exercise 7: Implement syscalls For New Environment Creation
	Slide 27: Exercise 7: Implement syscalls For New Environment Creation
	Slide 28: Exercise 7: Implement syscalls For New Environment Creation
	Slide 29: Exercise 7: Implement syscalls For New Environment Creation
	Slide 30: Exercise 7: Implement syscalls For New Environment Creation
	Slide 31: Exercise 7: Implement syscalls For New Environment Creation
	Slide 32: Exercise 7: Implement syscalls For New Environment Creation
	Slide 33: Exercise 7: Implement syscalls For New Environment Creation
	Slide 34: Exercise 7: Implement syscalls For New Environment Creation
	Slide 35: Exercise 7: Implement syscalls For New Environment Creation
	Slide 36: Exercise 7: Implement syscalls For New Environment Creation
	Slide 37: Part-A Result

