
CS 444/544 OS II
Lab Tutorial #7

Multiprocessor Support and Cooperative Multitasking

(Lab4 – Part A)

1Acknowledgement: Slides drawn heavily from Yeongjin Jiang

Getting Started

2

• Checkout to lab4 branch

• Merge lab3 into lab4

• Solve merge conflicts, if there is any

Multiprocessor Support

• Symmetric Multiprocessing Environment (SMP)
• All CPUs are equivalent
• Core 0, 1, 2, 3, …, all can access hardware resource, memory, etc.

• In boot
• We boot with one CPU – Bootstrapping processor (BSP), which is core 0
• BSP will initialize lab1 (monitor), lab2 (vm), lab3 (env), and then
• JOS will wake up other processes (in lab4)

• APIC (Advanced Programmable Interrupt Controller)
• Local APIC – used for getting information about how many cores available, what is

current CPU, and control CPUs to run code per each CPU, etc.
• kern/lapic.c

3

Exercise 1: mmio_map_region(pa, size)

• Map memory for Memory-Mapped IO (MMIO)
• Similar to boot_map_region / region_alloc

• Map [pa, pa+size) to [va, va + size)

• Where va starts with MMIOBASE

4

Exercise 1: mmio_map_region(pa, size)

• Corner cases
• pa/pa+len are not aligned with page size

• pa_start = ROUNDDOWN(pa, PGSIZE)

• pa_end = ROUNDUP(pa+len, PGSIZE)

• pa_offset = pa & 0xfff // gets the last 12-bit of the address

• Map [pa_start, pa_end) to
• va_start = base

• new_base = va_start + pa_end - pa_start

• Return?
• return old_base + pa_off;

• Why add pa_off?
• pa might not be page aligned, but it must return the corresponding virtual address to that

physical address (with offset)

5

Exercise 1: mmio_map_region(pa, size)

• What is PTE_PCD, PTE_PWT?

• PTE_PCD
• Page Cache Disable

• If this bit is set, CPU ignores caching memory blocks from this page

• Required for MMIO (caching will prevent direct access to hardware!)

• PTE_PWT
• Page Write Through

• If this bit is set, CPU immediately forward write to memory/hardware

• Required for MMIO (non-write through would delay hardware access!)

6

Exercise 2: Waking up Application Processors

7

Exercise 2: Waking up Application Processors

• What it does?
• Copy code for waking up

APs to MPENTRY_PADDR

• Algorithm
• code = vaddr(0x7000)

• Move code at
mpentry_start to 0x7000

• Run as the bootloader at
0x7c00

8

Exercise 2: Waking up Application Processors

• What’s at 0x7000?
• Looks very similar to bootloader

• Why?
• CPU 0 enabled protected mode

• CPU 0 enabled paging

• What about others??
• CPU 1, 2, 3, …?

• Are in the real mode!

9

Exercise 2: Waking up Application Processors

• So we need to enable
• Protected mode

• Enable paging

• Set stack (mpentry_kstack)

• Call mp_main()

Make sure to mark 0x7000 is in-use in page_init

10

Exercise 2: Waking up Application Processors

• Algorithm
• code = vaddr(0x7000)

• Move code at mpentry_start
to 0x7000

• For each core in CPU:
• Set separated kernel stack

• Let lapic to run 0x7000 on the
current core

• Wait until it changes
cpu_status to started

• In mp_main()

So it initialize one core, wait, one core, wait, …

11

Exercise 3&4: Per-CPU Init

• Kernel Stack
• Use percpu_kstacks

• TSS
• Update GDT

• curenv
• thiscpu->cpu_env

• Set cr3, tr, gdt, idt..

12

Exercise 3: Per-CPU Init, Set Kernel Stack

• inc/memlayout.h

• i-th CPU’s stack

• VA: KSTACKTOP – i * (KSTKSIZE+KSTKGAP)

• PA: PADDR(&percpu_kstacks[i])

• Use boot_map_region to map those region

13

Exercise 4: Per-CPU Init, trap_init_percpu

• Lab 3

• Set values of TSS

• Set TSS to GDT

• Load TSS

• Load IDT
We need to change this to initialize

each processor!!
14

Exercise 4: Per-CPU Init, trap_init_percpu

• Lab 4
• Replace ts with

• thiscpu->cpu_ts

• Access gdt via
• gdt[(GD_TSS0 >> 3) + cpunum()]

• Load TR per each CPU
• ltr(GD_TSS0 + (cpunum() << 3))

• Load IDT (we use the same IDT)
• lidt(&idt_pd) 15

Exercise 5: Lock

• We will have concurrent kernel execution, and to avoid interference
of having multiple execution in kernel, we use mutex (Lock/Unlock) to
define the entire kernel execution as a critical section

• Add lock_kernel and unlock_kernel in these locations…

16

Exercise 5: Lock

• In i386_init (kern/init.c)

17

Exercise 5: Lock

• In mp_main (kern/init.c)

18

Exercise 5: Lock

• In trap (kern/trap.c)

19

Exercise 5: Lock

• In env_run (kern/env.c)
• Insert unlock_kernel before env_pop_tf

20

Exercise 6: Round-Robin Scheduling

• We will use sched_yield() to enable cooperative multitasking
• Remember, cooperative multitasking works with voluntary yield from

processes…

• When yield happens,
• We will run the next available environment (this is round-robin!)

21

Exercise 6: Round-Robin Scheduling

• We will use sched_yield() to enable cooperative multitasking
• Remember, cooperative multitasking works with voluntary yield from

processes…

• When yield happens,
• We will run the next available environment (this is round-robin!)

x x RUNNING x RUNNABLE x

22

Exercise 6: Round-Robin Scheduling

• Tips

• How to get the current envid?
• curenv->env_id

• How to loop over the envs array?
• envs[ENVX(curenv->env_id)] // this is current env
• envs[(ENVX(curenv->env_id) + i) % NENV] // this will run a circular loop

• What if curenv == NULL?
• Set env_id as 0…

• Call env_run if you found a runnable environment

23

Exercise 6: Round-Robin Scheduling

• Also edit syscall.c (kern/syscall.c) to dispatch sched_yield()

24

Exercise 7: Implement syscalls For
New Environment Creation

sys_exofork

sys_env_set_status

sys_page_alloc

sys_page_map

sys_page_unmap

Implement 5 system calls to support new environment creation!

25

Exercise 7: Implement syscalls For
New Environment Creation
• sys_exofork()

• System call for support fork (in user space)

• What it should do?

26

Exercise 7: Implement syscalls For
New Environment Creation
• Allocating a new environment

• Struct Env *e;

• env_alloc(&e, curenv ? curenv->env_id : 0)

• We can set the parent env_id 0 if there is no curenv…

27

Exercise 7: Implement syscalls For
New Environment Creation
• Set new env status as ENV_NOT_RUNNABLE

• e->env_status = ENV_NOT_RUNNABLE

• Copy registers
• e->env_tf = curenv->env_tf // trapframe stores registers

• Set child return value as 0?
• e->env_tf.tf_regs.reg_eax = 0

28

Exercise 7: Implement syscalls For
New Environment Creation
• sys_env_set_status()

• If status is not either of ENV_RUNNABLE or ENV_NOT_RUNNABLE
• Return –E_INVAL

29

Exercise 7: Implement syscalls For
New Environment Creation
• sys_env_set_status()

• You may use envid2env(envid, struct Env **store, checkperm) to check if
envid is valid or not

• Read the function envid2env; this checks if:

30

Exercise 7: Implement syscalls For
New Environment Creation
• sys_page_alloc(envid, void *va, int perm)

• Map a page at the virtual address va with permission perm

• Use page_alloc(ALLOC_ZERO)to get a free physical page as
• struct PageInfo *pp

• Use page_insert(e->env_pgdir, pp, va, perm)to map it!

31

Exercise 7: Implement syscalls For
New Environment Creation
• sys_page_alloc(envid, void *va, int perm)

• Tips
• How to check perm only includes bits in PTE_SYSCALL?

• Why?
• perm&0xfff = get lower 12 bit permission flag

• ~PTE_SYSCALL = negation of PTE_SYSCALL; bits are 1 except for allowed flags

• If any of bit is 1, then perm has a flag other than sets in PTE_SYSCALL

32

Exercise 7: Implement syscalls For
New Environment Creation
• sys_page_alloc(envid, void *va, int perm)

• Tips
• How to check va is page aligned?

• Why?
• va&0xfff = offset

• It checks if offset == 0 or not…

33

Exercise 7: Implement syscalls For
New Environment Creation
• sys_page_alloc(envid, void *va, int perm)

• Tips
• How to check envid is valid?

• Use envid2env() with checkperm = 1

34

Exercise 7: Implement syscalls For
New Environment Creation
• sys_page_map(srcenvid, srcva, dstenvid, dstva, perm)

• Map the physical page that backs srcva to dstva

• You have to implement many checks, use the tricks with &0xfff and ~
• Also use envid2env to check srcenvid and dstenvid

• How to map a page from src to dst?
• Use page_lookup to get the struct PageInfo *pp of srcva

• This is a physical page

• Use page_insert to map that physical page to dstva

Also check the permission in the pte of srcva if it
is allowed for write or not (PTE_W)35

Exercise 7: Implement syscalls For
New Environment Creation
• sys_page_unmap(envid, va)

• This unmaps the virtual address at va

• Check va and envid using similar tricks that we’ve done for other
syscalls

• Use page_remove to unmap the mapping

36

Part-A Result

• If you are getting any assert error from pmap.c
• Please check if your implementation for mmio_map_region and page_init for

excluding MPENTRY_PADDR

• If you are getting any panic from user/kernel
• Check if you edited kern/syscall.c to dispatch each system calls in syscall()

• Fill the switch-case statement!

• Check if you returned correct values to user environment
• Check syscall return

• Check if you set the trapframe’s eax to 0 for sys_exofork

37

	Slide 1: CS 444/544 OS II Lab Tutorial #7
	Slide 2: Getting Started
	Slide 3: Multiprocessor Support
	Slide 4: Exercise 1: mmio_map_region(pa, size)
	Slide 5: Exercise 1: mmio_map_region(pa, size)
	Slide 6: Exercise 1: mmio_map_region(pa, size)
	Slide 7: Exercise 2: Waking up Application Processors
	Slide 8: Exercise 2: Waking up Application Processors
	Slide 9: Exercise 2: Waking up Application Processors
	Slide 10: Exercise 2: Waking up Application Processors
	Slide 11: Exercise 2: Waking up Application Processors
	Slide 12: Exercise 3&4: Per-CPU Init
	Slide 13: Exercise 3: Per-CPU Init, Set Kernel Stack
	Slide 14: Exercise 4: Per-CPU Init, trap_init_percpu
	Slide 15: Exercise 4: Per-CPU Init, trap_init_percpu
	Slide 16: Exercise 5: Lock
	Slide 17: Exercise 5: Lock
	Slide 18: Exercise 5: Lock
	Slide 19: Exercise 5: Lock
	Slide 20: Exercise 5: Lock
	Slide 21: Exercise 6: Round-Robin Scheduling
	Slide 22: Exercise 6: Round-Robin Scheduling
	Slide 23: Exercise 6: Round-Robin Scheduling
	Slide 24: Exercise 6: Round-Robin Scheduling
	Slide 25: Exercise 7: Implement syscalls For New Environment Creation
	Slide 26: Exercise 7: Implement syscalls For New Environment Creation
	Slide 27: Exercise 7: Implement syscalls For New Environment Creation
	Slide 28: Exercise 7: Implement syscalls For New Environment Creation
	Slide 29: Exercise 7: Implement syscalls For New Environment Creation
	Slide 30: Exercise 7: Implement syscalls For New Environment Creation
	Slide 31: Exercise 7: Implement syscalls For New Environment Creation
	Slide 32: Exercise 7: Implement syscalls For New Environment Creation
	Slide 33: Exercise 7: Implement syscalls For New Environment Creation
	Slide 34: Exercise 7: Implement syscalls For New Environment Creation
	Slide 35: Exercise 7: Implement syscalls For New Environment Creation
	Slide 36: Exercise 7: Implement syscalls For New Environment Creation
	Slide 37: Part-A Result

