CS 444/544 OS |1
Lab Tutorial #9

Preemptive Multitasking,
and Inter-process Communication
(Lab4 — Part C)

Acknowledgement: Slides drawn heavily from Yeongjin Jiang

Exercise 13/14: Enable Timer-interrupt-based
Preemptive Multitasking

* We will now enable timer-based preemptive multitasking, the
mechanism that we learn in the lecture

* To do this, you need to do the following:
* 1) write TRAPHANDLER / IDT entry to Hardware IRQs
e 2) handle timer interrupt
* 3) enable interrupt in user mode (ring 3)
* 4) enable interrupt in the scheduler (ring 0)

Exercise 13/14: Enable Timer-interrupt-based
Preemptive Multitasking

* 1) write TRAPHANDLER / IDT entry to Hardware IRQs

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

Exercise 13/14: Enable Timer-interrupt-based
Preemptive Multitasking

* 1) write TRAPHANDLER / IDT entry to Hardware IRQs

SETGATE (1dt[IRQ_OFFSET
SETGATE (1dt[IRQ_OFFSET
SETGATE (1dt[IRQ OFFSET
SETGATE (1dt[IRQ_OFFSET
SETGATE (1dt[IRQ_OFFSET
SETGATE (1dt[IRQ OFFSET
SETGATE (1dt[IRQ_OFFSET
SETGATE (1dt[IRQ_OFFSET
SETGATE (1dt[IRQ OFFSET
SETGATE (1dt[IRQ_OFFSET
SETGATE (1dt[IRQ_OFFSET
SETGATE (1dt[IRQ OFFSET
SETGATE (1dt[IRQ OFFSET
SETGATE (1dt[IRQ_OFFSET
SETGATE (1dt[IRQ OFFSET
SETGATE (1dt[IRQ_OFFSET

+++++++FF T

IRQ_TIMER], 0, GD_KT, t_irq_timer, 0);
IRQ_KBD], 0, GD_KT, t_irq_kbd, 0);

2], 0, GD KT, t_irq_2,
3], 0, GD KT, t_irq_3,
IRQ SERIAL], 0, GD KT,
5], 0, GD KT, t irq 5,
61, 0, GD KT, t_irq 6,

0);
0);
t irq_serial, 0);
0);
0);

IRQ SPURIOUS], 0, GD KT, t irq_spurious, 0);

8], 0, GD KT, t irq 8,
9], 0, GD KT, t_irq 9,

0);
0);

10], 0, GD_KT, t_irq_10, 0);
11], 0, GD KT, t_irq_11, 0);
12], 0, GD KT, t_irq_12, 0);
131, 0, GD_KT, t_irq_13, 0);
IRQ IDE], 0, GD KT, t _irq_ide, 0);
151, 0, GD_KT, t_irq_15, 0);

Exercise 13/14: Enable Timer-interrupt-based
Preemptive Multitasking

 2) handle timer interrupt

* In trap_dispatch()

case (IRQ OFFSET + IRQ TIMER):
{

lapic_eoi();
sched yield();

}

* Meaning

* If timer interrupt arrives, we schedule another process to support preemptive
multitasking!

Exercise 13/14: Enable Timer-interrupt-based
Preemptive Multitasking

* 3) enable interrupt in user mode (ring 3)

* In env_alloc() in kern/env.c

e->env_tf.tf eflags |= FL_IF;

* This will enable receiving interrupt during user execution

Exercise 13/14: Enable Timer-interrupt-based
Preemptive Multitasking

* 4) enable interrupt in the scheduler (ring 0)

* In sched_halt() in kern/sched.c

asm volatile (
"movl $0, ebp\n"
"movl %0, esp\n"
"pushl $0\n"
"pushl $0\n"

"sti\n"
"1:\n"
"h1lt\n"
"Jjmp lb\n"

: : "a" (thiscpu->cpu_ts.ts_esp0));

Now You Should Get ALL OKs up to SPIN

* Check TRAPHANDLER, IDT, trap_dispatch, or enabling/disabling
interrupt if your JOS does not switch among environment correctly...

dumbfork: (2.9s)
Part A score: 5/5

faultread: (1.1s)
faultwrite: (1.6s)
faultdie: (1.0s)
faultregs: (1.1s)
faultalloc: (1.1s)
faultallocbad: (1.9s)
faultnostack: (2.1s)
faultbadhandler: (1.1s)
faultevilhandler: (1.7s)
forktree: (1.3s)

Part B score: 50/50

spin: (1.8s)

Caveat

* Kernel Panic: interrupt is not disabled

kernel panic on CPU 0 at kern/trap.c:414: assertion failed: I (read_eflags() & FL_IF)

* |f you get this error, this could be happening if

SETGATE(1dt[T_SYSCALL], 1, GD_KT, t_syscall, 3);

* You set the 2" arg of SETGATE as 1

* This flag is for enabling/disabling interrupt while handling another interrupt
* So we must set it as O for all SETGATE for the current JOS implementation

Exercise 15: Implementing IPC

* Inter-process Communication (IPC)
A communication channel between two processes (environments)

* Process does not share memory space

* The same virtual address will be backed by different physical pages
Send “1234"”!

* Then, how can we send a message? ‘ 1

ENV 1 ENV 2

Sender Receiver

Exercise 15: send/recv via Kernel

* How kernel mediates message passing
between 2 envs?

* Receiver (sys ipc recv)

* Indicate the env is waiting for a message
* env_ipc_recving =1

* Because it must wait until recv the msg,
* Set env_status = NOT_RUNNABLE
DO NOT RUN this if it waits for IPC msg

» Set tf regs.regs eax =0
* |t will return O if recv succeeds

* Run sched_yield()
* sys_ipc_recv will never directly return O
* env_pop_ret will return O from tf..

Send “1234”!

}

ENV 1

Sender

ENV 2

sys_ipc_recv()

Receiver

struct Env *el

JOS KERNEL

struct Env *e2

env_ipc_recving =1
env_status =
NOT_RUNNABLE
tf_regs.regs_eax=0

11

Exercise 15: send/recv via Kern?l Sind"ﬂw!

ENV 1 ENV 2
* How kernel mediates message passing
between 2 envs? sys_ipc_recv()
Waiting!!!
sys_ipc_try_send(
* Sender (sys_ipc_try_send) Sender Receiver
* Check if target envid is waiting for IPC
* if (e2->env_ipc_recving == 1)
* Send the value via env_ipc_value
e e2->env_ipc_value =1234; JOS KERNEL
* Set who sent the value i 8y el emjtgggt rEe”C‘:/;egzz .
e e2->env_ipc_from = curenv->env_id S ST =
* Set e2->env_status as thr':;’;'r‘:g':‘Negszo
* ENV_RUNNABLE en;_ipc_valu_e =1234

env_ipc_from

12

Exercise 15: send/recv via Kern$|

* How kernel mediates message passing
between 2 envs?

After ENV1 sets ENV2’s status as

,then ENV2 can be
scheduled and run

returns via env_pop_tf

How can we get the value 12347
thisenv->env_ipc_value

How can we get who sent the value?
thisenv->env_ipc_from

Send “1234"!

ENV 1

sys_ipc_try_send(

Sender

}

ENV 2

sys_ipc_recv()
Waiting!!!

Receiver

JOS KERNEL

struct Env *el

struct Env *e2
env_ipc_recving =1
env status =
ENV_RUNNABLE
tf _regs.regs eax =0
env_ipc_value = 1234
env_ipc_from

Exercise 15: How to Send a Page?

* Now we know how to send a 4 byte data (value)
* Store that in env’s env_ipc_value

e Can we send more than 4 bytes (e.g., sending 512 bytes at once) ?
e 1. Use value to indicate the size of data (e.g., 512 bytes)
e 2. Put a 512-byte data in a physical page (from sender)
* 3. Sender maps the page at dstva of Receiver ENV

e 4. After receiver gets the value (from env_ipc_value == 512)
* Read that amount of data from dstva

Exercise 15: Send a Page

Map the page for
srcva to dstva!

Send “512 byte of data”!

N

ENV 1 ENV 2

ys_ipc_try_send()

sys_ipc_recv()
Waiting!!!

Phys Mem

dstva

Sender Receiver

N\

JOS KERNEL
struct Env *e2
struct Env *el env_ipc_recving =1
env status =

ENV_RUNNABLE
tf_regs.regs eax =0
env_ipc_dstva = dstva
anv_ipc_value =512

15

Exercise 15: Some hints

* Use page lookup and page_insert to
* Get the PTE of srcva
* Get the corresponding physical page of srcva (struct Pagelnfo *pp)
* Put pp to dstva via page_insert
* Also set e->env_ipc_perm (get the perm from the PTE of srcva)

Exercise 15: Some hints

* In lib/ipc.c
* sys_ipc_recv never returns if there is no error

* |t will internally run sched_yield() -> then env_run() will schedule it back
* So pass the return value via tf_regs.regs eax=0

* ipc_send must wait if receiving env is not ready
* sys ipc_try _end returns —E_IPC_NOT_RECV
 Then stay in a while loop and keep try to send...

 NULL is not an invalid address for srcva/dstva
e Put higher address than UTOP, e.g., KERNBASE?

Exercise 15: Some hints

* When submitting lab4, make your JOS run fast enough to pass grading
script

DO NOT use too many cprintf
* Primes could be VERY SLOW
* Removing debug printing will let you finish this within 30 seconds...

	Slide 1: CS 444/544 OS II Lab Tutorial #9
	Slide 2: Exercise 13/14: Enable Timer-interrupt-based Preemptive Multitasking
	Slide 3: Exercise 13/14: Enable Timer-interrupt-based Preemptive Multitasking
	Slide 4: Exercise 13/14: Enable Timer-interrupt-based Preemptive Multitasking
	Slide 5: Exercise 13/14: Enable Timer-interrupt-based Preemptive Multitasking
	Slide 6: Exercise 13/14: Enable Timer-interrupt-based Preemptive Multitasking
	Slide 7: Exercise 13/14: Enable Timer-interrupt-based Preemptive Multitasking
	Slide 8: Now You Should Get ALL OKs up to SPIN
	Slide 9: Caveat
	Slide 10: Exercise 15: Implementing IPC
	Slide 11: Exercise 15: send/recv via Kernel
	Slide 12: Exercise 15: send/recv via Kernel
	Slide 13: Exercise 15: send/recv via Kernel
	Slide 14: Exercise 15: How to Send a Page?
	Slide 15: Exercise 15: Send a Page
	Slide 16: Exercise 15: Some hints
	Slide 17: Exercise 15: Some hints
	Slide 18: Exercise 15: Some hints

