
CS 444/544 OS II
Lab Tutorial #9

Preemptive Multitasking,

and Inter-process Communication

(Lab4 – Part C)

1Acknowledgement: Slides drawn heavily from Yeongjin Jiang



Exercise 13/14: Enable Timer-interrupt-based 
Preemptive Multitasking
• We will now enable timer-based preemptive multitasking, the 

mechanism that we learn in the lecture

• To do this, you need to do the following:
• 1) write TRAPHANDLER / IDT entry to Hardware IRQs

• 2) handle timer interrupt

• 3) enable interrupt in user mode (ring 3)

• 4) enable interrupt in the scheduler (ring 0)

2



Exercise 13/14: Enable Timer-interrupt-based 
Preemptive Multitasking
• 1) write TRAPHANDLER / IDT entry to Hardware IRQs

3



Exercise 13/14: Enable Timer-interrupt-based 
Preemptive Multitasking
• 1) write TRAPHANDLER / IDT entry to Hardware IRQs

4



Exercise 13/14: Enable Timer-interrupt-based 
Preemptive Multitasking
• 2) handle timer interrupt

• In trap_dispatch()

• Meaning
• If timer interrupt arrives, we schedule another process to support preemptive 

multitasking!

5



Exercise 13/14: Enable Timer-interrupt-based 
Preemptive Multitasking
• 3) enable interrupt in user mode (ring 3)

• In env_alloc() in kern/env.c

• This will enable receiving interrupt during user execution

6



Exercise 13/14: Enable Timer-interrupt-based 
Preemptive Multitasking
• 4) enable interrupt in the scheduler (ring 0)

• In sched_halt() in kern/sched.c

7



Now You Should Get ALL OKs up to SPIN

• Check TRAPHANDLER, IDT, trap_dispatch, or enabling/disabling 
interrupt if your JOS does not switch among environment correctly…

8



Caveat

• Kernel Panic: interrupt is not disabled

• If you get this error, this could be happening if 

• You set the 2nd arg of SETGATE as 1

• This flag is for enabling/disabling interrupt while handling another interrupt
• So we must set it as 0 for all SETGATE for the current JOS implementation

9



Exercise 15: Implementing IPC

• Inter-process Communication (IPC)
• A communication channel between two processes (environments)

• Process does not share memory space
• The same virtual address will be backed by different physical pages

• Then, how can we send a message?

10

ENV 1 ENV 2

Send “1234”!

Sender Receiver



Exercise 15: send/recv via Kernel

• How kernel mediates message passing 
between 2 envs?

• Receiver (sys_ipc_recv)
• Indicate the env is waiting for a message

• env_ipc_recving = 1
• Because it must wait until recv the msg,

• Set env_status = NOT_RUNNABLE
• DO NOT RUN this if it waits for IPC msg

• Set tf_regs.regs_eax = 0
• It will return 0 if recv succeeds

• Run sched_yield()
• sys_ipc_recv will never directly return 0
• env_pop_ret will return 0 from tf..

11

ENV 1 ENV 2

Send “1234”!

Sender Receiver

JOS KERNEL

struct Env *e1 struct Env *e2

env_ipc_recving = 1
env_status = 

NOT_RUNNABLE
tf_regs.regs_eax = 0

sys_ipc_recv()



Exercise 15: send/recv via Kernel

• How kernel mediates message passing 
between 2 envs?

• Sender (sys_ipc_try_send)
• Check if target envid is waiting for IPC

• if (e2->env_ipc_recving == 1)

• Send the value via env_ipc_value
• e2->env_ipc_value = 1234;

• Set who sent the value
• e2->env_ipc_from = curenv->env_id

• Set e2->env_status as
• ENV_RUNNABLE

12

ENV 1 ENV 2

Send “1234”!

Sender Receiver

JOS KERNEL

struct Env *e1
struct Env *e2

env_ipc_recving = 1
env_status = 

NOT_RUNNABLE
tf_regs.regs_eax = 0

env_ipc_value = 1234
env_ipc_from

sys_ipc_recv()
Waiting!!!

sys_ipc_try_send()

ENV_RUNNABLE



Exercise 15: send/recv via Kernel

• How kernel mediates message passing 
between 2 envs?

• Sender (sys_ipc_try_send)
• Check if target envid is waiting for IPC

• if (e2->env_ipc_recving == 1)

• Send the value via env_ipc_value
• e2->env_ipc_value = 1234;

• Set who sent the value
• e2->env_ipc_from = curenv->env_id

• Set e2->env_status as
• ENV_RUNNABLE

13

ENV 1 ENV 2

Send “1234”!

Sender Receiver

JOS KERNEL

struct Env *e1
struct Env *e2

env_ipc_recving = 1
env_status = 

NOT_RUNNABLE
tf_regs.regs_eax = 0

env_ipc_value = 1234
env_ipc_from

sys_ipc_recv()
Waiting!!!

sys_ipc_try_send()

ENV_RUNNABLE

After ENV1 sets ENV2’s status as
ENV_RUNNABLE, then ENV2 can be 
scheduled and run

sys_ipc_recv returns via env_pop_tf

How can we get the value 1234?
thisenv->env_ipc_value

How can we get who sent the value?
thisenv->env_ipc_from



Exercise 15: How to Send a Page?

• Now we know how to send a 4 byte data (value)
• Store that in env’s env_ipc_value

• Can we send more than 4 bytes (e.g., sending 512 bytes at once) ?
• 1. Use value to indicate the size of data (e.g., 512 bytes)

• 2. Put a 512-byte data in a physical page (from sender)

• 3. Sender maps the page at dstva of Receiver ENV

• 4. After receiver gets the value (from env_ipc_value == 512)
• Read that amount of data from dstva

14



Exercise 15: Send a Page

15

ENV 1 ENV 2

Send “512 byte of data”!

Sender Receiver

JOS KERNEL

struct Env *e1
struct Env *e2

env_ipc_recving = 1
env_status = 

NOT_RUNNABLE
tf_regs.regs_eax = 0

env_ipc_dstva = dstva
env_ipc_value = 512

env_ipc_from

sys_ipc_recv()
Waiting!!!

sys_ipc_try_send()

ENV_RUNNABLE

srcva

Phys Mem

srcva

dstva

Map the page for
srcva to dstva!



Exercise 15: Some hints

• Use page_lookup and page_insert to 
• Get the PTE of srcva

• Get the corresponding physical page of srcva (struct PageInfo *pp)

• Put pp to dstva via page_insert

• Also set e->env_ipc_perm (get the perm from the PTE of srcva)

16



Exercise 15: Some hints

• In lib/ipc.c
• sys_ipc_recv never returns if there is no error

• It will internally run sched_yield() -> then env_run() will schedule it back

• So pass the return value via tf_regs.regs_eax = 0

• ipc_send must wait if receiving env is not ready
• sys_ipc_try_end returns –E_IPC_NOT_RECV

• Then stay in a while loop and keep try to send…

• NULL is not an invalid address for srcva/dstva
• Put higher address than UTOP, e.g., KERNBASE?

17



Exercise 15: Some hints

• When submitting lab4, make your JOS run fast enough to pass grading 
script

• DO NOT use too many cprintf
• Primes could be VERY SLOW

• Removing debug printing will let you finish this within 30 seconds…

18


	Slide 1: CS 444/544 OS II Lab Tutorial #9
	Slide 2: Exercise 13/14: Enable Timer-interrupt-based Preemptive Multitasking
	Slide 3: Exercise 13/14: Enable Timer-interrupt-based Preemptive Multitasking
	Slide 4: Exercise 13/14: Enable Timer-interrupt-based Preemptive Multitasking
	Slide 5: Exercise 13/14: Enable Timer-interrupt-based Preemptive Multitasking
	Slide 6: Exercise 13/14: Enable Timer-interrupt-based Preemptive Multitasking
	Slide 7: Exercise 13/14: Enable Timer-interrupt-based Preemptive Multitasking
	Slide 8: Now You Should Get ALL OKs up to SPIN
	Slide 9: Caveat
	Slide 10: Exercise 15: Implementing IPC
	Slide 11: Exercise 15: send/recv via Kernel
	Slide 12: Exercise 15: send/recv via Kernel
	Slide 13: Exercise 15: send/recv via Kernel
	Slide 14: Exercise 15: How to Send a Page?
	Slide 15: Exercise 15: Send a Page
	Slide 16: Exercise 15: Some hints
	Slide 17: Exercise 15: Some hints
	Slide 18: Exercise 15: Some hints

