
CS444/544
Operating Systems II

Lecture 10

System Calls and Page Fault

5/6/2024

1

Acknowledgement: Slides drawn heavily from Yeongjin Jiang

Reminders

• 75% due for lab 2: today’s midnight

• Quiz 2 next Monday
• Review and prep. on Wednesday’s lecture

2

Recap: A High-level Overview of
User/Kernel Execution

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

printf()

sys_write()

A library call in ring 3

A system call,
From ring 3 to ring 0

do_sys_write()A kernel function

3

Recap: A High-level Overview of
User/Kernel Execution

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

printf()

sys_write()

A library call in ring 3

A system call,
From ring 3 to ring 0

do_sys_write()

iret (ring 0 to ring 3)

ret (ring 3)

A kernel function

4

Today’s Topic

• More about System Call
• Privilege separation and call gate

• Page Fault
• How does an OS handle a fault and resume the execution?

• For what purpose?
• Automatic stack allocation

• Copy-on-write

• Swap

5

Ring 3 (User) and Ring 0 (Kernel)

• Why do we have privilege separation?
• Security!

• We do not know what application will do
• Do not allow dangerous operations to system

• Flash BIOS, format disk, deleting system files, etc.

• Only the OS can access hardware
• Apply access control on accessing hardware

resources!

• E.g., only the administrator can format disk

6

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

6

OS must mediate hardware access request from
userspace, and we handle this via system calls

Library Calls vs. System Calls

• Library Calls
• APIs in Ring 3

• DO NOT include operations in Ring 0
• Cannot access hardware directly

• Could be a wrapper for some computation or

• Could be a wrapper for system calls
• E.g., printf() internally uses write(), which is a system call

• Some system calls are available as library calls
• As wrappers in Ring 3

OS Syscalls

Ring 3

Library Calls

App

Hardware

7

Library Calls vs. System Calls

• System Calls
• APIs in Ring 0

• OS’s abstraction for hardware
interface for user space

• Called when Ring 3 application
need to perform Ring 0
operations

OS

sys_write()

sys_read()

sys_send()

App

printf()

scanf()

send()

8

Ring 3
Unprivileged

Ring 0
Privileged

System Call Design

• Application should not call arbitrary
function
• If so, app can do all operations that OS

can do; privilege separation is
meaningless!

• How can we avoid this, in other words,
how can we restrict apps to invoke
system calls only but not other OS
functions?

OS

sys_write()

other_func()

sys_read()

sys_send()

App

printf()
bad_func()

scanf()

send()

9

Ring 3
Unprivileged

Ring 0
Privileged

System Call Design

• Application should not call arbitrary
function
• If so, app can do all operations that OS

can do; privilege separation is
meaningless!

• How can we avoid this, in other words,
how can we restrict apps to invoke
system calls only but not other OS
functions?

App

printf()
bad_func()

scanf()

send()

10

Ring 3
Unprivileged

OS

sys_write()

other_func()

sys_read()

sys_send()

Ring 0
Privileged

Secure System Call Design:
Call Gate via Interrupt Handling
• Call gate: a secure method to control access to Ring 0!

OS

sys_write()

other_func()

sys_read()

sys_send()

App

printf()

scanf()

send()

fwrite()

System call gate
(syscall() in JOS)

 sys_write()

 sys_read()

 sys_send()

Trap/syscall()

11

Call Gate via Interrupt Handling

• Call gate
• System call can be invoked only with trap handler

• int $0x30 – in JOS

• int $0x80 – in Linux (32-bit)

• int $0x2e – in Windows (32-bit)

• sysenter/sysexit (32-bit)

• syscall/sysret (64-bit)

• OS performs checks if user space is doing a right thing
• Before performing important ring 0 operations

• E.g., accessing hardware..

OS Syscalls

Ring 3

Library Calls

App

Hardware

int $0x30

CHECK!!

12

An Example of Protecting Syscalls
via Call Gate
• How can we protect ‘read()’ system call?

• read(int fd, void *buf, size_t count)

• Read count bytes from a file pointed by fd and store those in buf

• Usage

13

An Example of Protecting Syscalls
via Call Gate
• Problem: what will happen if we call…

• This is trying to overwrite kernel code with your keystroke typing..
• If this was allowed, changing kernel code from Ring 3 is possible!

14

How Call Gate Works?

• We can hook all syscalls from Ring 3 at our syscall trap handler

App

read(0, stack_buffer, 512);

System call gate
(syscall() in JOS)

 sys_write()

 sys_read()

 sys_send()

Trap/syscall()

Check arguments!
User address!

OS

sys_write()

other_func()

sys_read()

sys_send()

15

Call Gate

• We can hook all syscalls from Ring 3 at our syscall trap handler

App

read(0, kernel_address, 512);

System call gate
(syscall() in JOS)

 sys_write()

 sys_read()

 sys_send()

Trap/syscall()

Check arguments!
No! kernel address!

16

OS

sys_write()

other_func()

sys_read()

sys_send()

Error!

Test

17

Check How System Calls are Invoked in Linux
Kernel
• Use strace in Linux, e.g., $ strace /bin/ls

18

Summary: System Call / Call Gate

• Prevent Ring 3 from accessing hardware directly
• Security reasons!
• OS mediates hardware access via system calls

• You may regard system calls as APIs of an OS

• How to prevent an application from running arbitrary ring 0 operation?
• Call gate

• Modern OS use call gate to protect system calls
• At trap handler, an OS can apply access control to system call request

19

Handling Fault: Page Fault

• Faults
• Faulting instruction has not executed (e.g., page fault)

• Resume the execution after handling the fault

• Resume the execution after handling the fault

20

Page Fault: A Case of Handling Faults

• Occurs when paging (address translation) fails
• !(pde&PTE_P) or !(pte&PTE_P): invalid translation

• Write access but !(pte&PTE_W): access violation

• Access from user but !(pte&PTE_U): protection violation

21

Page Fault: an Example

• Accessing a Kernel address from User

22

Page Fault: an Example

• Accessing a Kernel address from User

23

Page Fault: What Does CPU Do?

• CPU let OS know why and where such a page fault happened
• CR2: stores the address of the fault

• Error code: stores the reason of the fault 0xf0100064

1

24

11

CPU/OS Execution Example

• User program accesses 0xf0100064

• CPU generates page fault (pte&PTE_U == 0)
• Put the faulting address on CR2
• Put an error code
• Calls page fault handler in IDT

• OS: page_fault_handler
• Read CR2 (address of the fault, 0xf0100064)
• Read error code (contains the reason of the fault)
• Resolve error (if not, destroy the environment)
• Continue user execution

• User: resume on that instruction (or destroyed by the OS)

25

Fault Resume Example:
Stack Overflow
• inc/memlayout.h

• We allocate one (1) page for the user stack

• If you use a large local variable on the stack
• Stack overflow (stack grows down…)

NOT MAPPED!

26

Some Idea:
Allocating New Stack Automatically
• Can we detect such an access and allocate a new page for the stack

automatically?
• Yes

• We will utilize ‘Page Fault’

• Observations
• Stack overflow would be sequential (access pages adjacent to the stack)

• We should catch both read/write access (both should fault)

27

Example: New Stack Allocation by Fault
(User)
• Stack ends at 0xeebfd000

• Suppose the current value of esp (stack) is
• 0xeebfd010

• User program creates a new variable: char buf[32]
• buf = 0xeebfcff0

• Buffer range: 0xeebfcff0 ~ 0xeebfd010

• On accessing buf[0] = ‘1’;
• movb $0x31, (%eax)

• eax = 0xeebfcff0 No translation for 0xeebfc000

• Need to allocate 0xeebfc000 ~ 0xeebfd000

28

STACK

0xeebfd000

0xeebfe000
esp

buf
No mapping!

0xeebfc000

Example: New Stack Allocation by Fault (CPU)

• Lookup page table
• No translation!

• Store 0xeebfcff0 to CR2

• Set error code
• “The fault was caused by a non-present page!”

• Raise page fault exception (interrupt #14) -> call page fault handler

NOT MAPPED!

29

Example: New Stack Allocation by Fault (OS)

• Interrupt will make CPU invoke the page_fault_handler()

• Read CR2
• 0xeebfcff0, it seems like the page right next to current stack end

• The current stack end is: 0xeebfd000

• Read error code
• “The fault was caused by a non-present page!”

• Let’s allocate a new page for the stack!

30

STACK

0xeebfd000

0xeebfe000

No mapping!

Example: New Stack Allocation by Fault (OS)

• Allocate a new page for the stack
• Struct PageInfo *pp = page_alloc(ALLOC_ZERO);

• Get a new page, and wipe it to have all zero as its contents

• page_insert(env_pgdir, pp, 0xeebfc000, PTE_U|PTE_W);

• Map a new page to that address!

• iret!

31

STACK

0xeebfd000

0xeebfe000

0xeebfc000

STACK

Example: New Stack Allocation by Fault
(User-Return)
• On accessing buf[0] = ‘1’;

• movb $0x31, (%eax)

• eax = 0xeebfcff0 No translation for 0xeebfc000

• Execute the faulting instruction again: buf[0] = ‘1’;
• movb $0x31, (%eax)

• eax = 0xeebfcff0 Now translation is valid!

• Continue to execute the loop..

32

0xeebfd000

0xeebfe000

0xeebfc000

STACK

STACK

By exploiting page fault and its handler, we can implement
automatic allocation of user stack!

Other Useful Examples of Using
Page Fault (in Modern OSes)
• Copy-on-Write (CoW)

• Technique to reduce memory footprint
• Share pages read-only
• Create a private copy when the first write access happens

• Memory Swapping
• Use disk as extra space for physical memory
• Limited RAM Size: 16GB?
• We have a bigger storage: 1T SSD, Hard Disk, online storage, etc.
• Can we store some ‘currently unused but will be used later’ part into the disk?

• Then we can store only the active part of data in memory

33

Copy-on-Write (CoW) to Reduce Memory
Footprint
• Think about our os2 server

• Will run many /bin/bash, /usr/bin/gdb, /usr/bin/tmux, etc.
• Each of you will run those programs!!

• Do we need to have 110 copies of the same program in memory?

• How can we build an OS to efficiently load them and minimize
memory usage?
• Share physical pages of the same program!

34

Count number of processes running bash, tmux, and gdb

A Program

• .text
• Code area. Read-only and executable

• .rodata
• Data area, Read-only and not executable

• .data
• Data area, Read/Writable (not executable)
• Initialized by some values

• .bss (uninitialized data)
• Data area, Read/Writable (not executable)
• Initialized as 0

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

35

Running the Same Program…

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

Process 1

Process 2

Do we need to copy the same data for
each process creation?

36

Sharing by Read-only

• Set page table to map the same physical address to share contents

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 2

37

OK for Read-only Sections

• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

Write

Page fault!

38

Page Fault Handler

• Read CR2
• An address that is in the page cache

• Hmm… a fault from one of the shared location!

• Read Error code
• Write on read-only memory

• Hmm… the process requires a private copy! (we actually mark if COW is required in PTE)

• ToDo: create a writable, private copy for that process!
• Map a new physical page (page_alloc, page_insert)
• Copy the contents
• Mark it read/write
• Resume…

39

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 2

Copy–on-Write

• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

Write

Page fault!

.bss (RW-)

COPY!

MAP!

.bss (RW-)

40

Copy–on-Write

• How can we distinguish real fault from a CoW fault?

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

Write

Page fault!

.bss (RW-)

COPY!

MAP!

.bss (R--)

41

Write

Page fault!

This is the real protection fault

Use Available Flags in PTE

• PTE_COW

• 1000 0000 0000
• 11th-bit is 1

42

Copy–on-Write

• How can we distinguish real fault from a CoW fault?

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)
PTE_COW==0

.data (R--)

.bss (R--)

Process 1

Write

Page fault!

.bss (RW-)

COPY!

MAP!

.bss (R--)
PTE_COW==1

43

Write

Page fault!

This is the real protection fault

Benefits?

• Can reduce time for copying contents that is already in some physical
memory (page cache)

• Can reduce actual use of physical memory by sharing code/read-only
data among multiple processes
• 1,000,000 processes, requiring only 1 copy of .text/.rodata

• At the same time
• Can support sharing of writable pages (if not written at all)

• Can create private pages seamlessly on write

44

By exploiting page fault and its handler, we can implement
copy-on-write, a mechanism that can reduce physical memory

usage by sharing pages of same contents among
multiple processes.

Memory Swapping

• Memory Hierarchy

DISK
(TB? PB?)

Main Memory
(GB)

Cache
(MB)

Reg
(KB)

FAST Expensive

SIZE

45

Challenge

• Suppose you have 8GB of main memory

• Can you run a program that its program size is 16GB?
• Yes, you can load them part by part

• This is because we do not use all of data at the same time

• Can your OS do this execution seamlessly to your application?

46

Memory Swapping
Virtual Memory Physical Memory

0xf0200000

0xf0100000

pgdir

PT

PT

47

Swapping – Remove a page…
Virtual Memory Physical Memory

0xf0200000

0xf0100000

pgdir

PT

PT

Access

Page Fault!

DISK 0xf0200000

48

Swapping - OS

• Page fault handler
• Read CR2 (get address, 0xf0200000)
• Read error code

• If error code says that the fault is caused by non-present page and

• The faulting page of the current process is stored in the disk
• Lookup disk if it swapped put 0xf0200000 of this environment (process)

• This must be per process because virtual address is per-process resource

• Load that page into physical memory

• Map it and then continue!

49

Swapping – Remove a page…
Virtual Memory Physical Memory

pgdir

PT

PT

Access

Page Fault!

DISK 0xf0200000 READ from DISK

Allocate
New page!

Create new map!

50

Continue!

Page Fault

• Is generated when there is a memory error (regarding paging)

• Is an exception that can be recovered
• And user program may resume the execution

• Is useful for implementing
• Automatic stack allocation

• Copy-on-write (will do in Lab4)

• Memory Swapping

51

	Slide 1: CS444/544 Operating Systems II
	Slide 2: Reminders
	Slide 3: Recap: A High-level Overview of User/Kernel Execution
	Slide 4: Recap: A High-level Overview of User/Kernel Execution
	Slide 5: Today’s Topic
	Slide 6: Ring 3 (User) and Ring 0 (Kernel)
	Slide 7: Library Calls vs. System Calls
	Slide 8: Library Calls vs. System Calls
	Slide 9: System Call Design
	Slide 10: System Call Design
	Slide 11: Secure System Call Design: Call Gate via Interrupt Handling
	Slide 12: Call Gate via Interrupt Handling
	Slide 13: An Example of Protecting Syscalls via Call Gate
	Slide 14: An Example of Protecting Syscalls via Call Gate
	Slide 15: How Call Gate Works?
	Slide 16: Call Gate
	Slide 17: Test
	Slide 18: Check How System Calls are Invoked in Linux Kernel
	Slide 19: Summary: System Call / Call Gate
	Slide 20: Handling Fault: Page Fault
	Slide 21: Page Fault: A Case of Handling Faults
	Slide 22: Page Fault: an Example
	Slide 23: Page Fault: an Example
	Slide 24: Page Fault: What Does CPU Do?
	Slide 25: CPU/OS Execution Example
	Slide 26: Fault Resume Example: Stack Overflow
	Slide 27: Some Idea: Allocating New Stack Automatically
	Slide 28: Example: New Stack Allocation by Fault (User)
	Slide 29: Example: New Stack Allocation by Fault (CPU)
	Slide 30: Example: New Stack Allocation by Fault (OS)
	Slide 31: Example: New Stack Allocation by Fault (OS)
	Slide 32: Example: New Stack Allocation by Fault (User-Return)
	Slide 33: Other Useful Examples of Using Page Fault (in Modern OSes)
	Slide 34: Copy-on-Write (CoW) to Reduce Memory Footprint
	Slide 35: A Program
	Slide 36: Running the Same Program…
	Slide 37: Sharing by Read-only
	Slide 38: OK for Read-only Sections
	Slide 39: Page Fault Handler
	Slide 40: Copy–on-Write
	Slide 41: Copy–on-Write
	Slide 42: Use Available Flags in PTE
	Slide 43: Copy–on-Write
	Slide 44: Benefits?
	Slide 45: Memory Swapping
	Slide 46: Challenge
	Slide 47: Memory Swapping
	Slide 48: Swapping – Remove a page…
	Slide 49: Swapping - OS
	Slide 50: Swapping – Remove a page…
	Slide 51: Page Fault

