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Reminders

• 75% due for lab 2: today’s midnight

• Quiz 2 next Monday 
• Review and prep. on Wednesday’s lecture 
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Recap: A High-level Overview of
User/Kernel Execution

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

printf()

sys_write()

A library call in ring 3

A system call,
From ring 3 to ring 0

do_sys_write()A kernel function
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Recap: A High-level Overview of
User/Kernel Execution

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

printf()

sys_write()

A library call in ring 3

A system call,
From ring 3 to ring 0

do_sys_write()

iret (ring 0 to ring 3)

ret (ring 3)

A kernel function
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Today’s Topic

• More about System Call
• Privilege separation and call gate

• Page Fault
• How does an OS handle a fault and resume the execution?

• For what purpose?
• Automatic stack allocation

• Copy-on-write

• Swap
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Ring 3 (User) and Ring 0 (Kernel)

• Why do we have privilege separation?
• Security!

• We do not know what application will do
• Do not allow dangerous operations to system

• Flash BIOS, format disk, deleting system files, etc.

• Only the OS can access hardware
• Apply access control on accessing hardware 

resources!

• E.g., only the administrator can format disk
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OS Kernel (Ring 0)

User Level (Ring 3)

Libraries
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OS must mediate hardware access request from 
userspace, and we handle this via system calls



Library Calls vs. System Calls

• Library Calls
• APIs in Ring 3

• DO NOT include operations in Ring 0
•  Cannot access hardware directly

• Could be a wrapper for some computation or

• Could be a wrapper for system calls
• E.g., printf() internally uses write(), which is a system call

• Some system calls are available as library calls
• As wrappers in Ring 3

OS Syscalls

Ring 3

Library Calls

App

Hardware
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Library Calls vs. System Calls

• System Calls
• APIs in Ring 0

• OS’s abstraction for hardware 
interface for user space

• Called when Ring 3 application 
need to perform Ring 0 
operations

OS

sys_write()

sys_read()

sys_send()

App

printf()

scanf()

send()
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Ring 3
Unprivileged

Ring 0
Privileged



System Call Design

• Application should not call arbitrary 
function  
• If so, app can do all operations that OS 

can do; privilege separation is 
meaningless!

• How can we avoid this, in other words, 
how can we restrict apps to invoke 
system calls only but not other OS 
functions?

OS

sys_write()

other_func()

sys_read()

sys_send()

App

printf()
bad_func()

scanf()

send()
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Ring 3
Unprivileged

Ring 0
Privileged



System Call Design

• Application should not call arbitrary 
function  
• If so, app can do all operations that OS 

can do; privilege separation is 
meaningless!

• How can we avoid this, in other words, 
how can we restrict apps to invoke 
system calls only but not other OS 
functions?

App

printf()
bad_func()

scanf()

send()
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Ring 3
Unprivileged

OS

sys_write()

other_func()

sys_read()

sys_send()

Ring 0
Privileged



Secure System Call Design:
Call Gate via Interrupt Handling
• Call gate: a secure method to control access to Ring 0!

OS

sys_write()

other_func()

sys_read()

sys_send()

App

printf()

scanf()

send()

fwrite()

System call gate
(syscall() in JOS)

           sys_write()

   sys_read()

   sys_send()

Trap/syscall()
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Call Gate via Interrupt Handling

• Call gate
• System call can be invoked only with trap handler

• int $0x30 – in JOS

• int $0x80 – in Linux (32-bit)

• int $0x2e – in Windows (32-bit)

• sysenter/sysexit (32-bit)

• syscall/sysret (64-bit)

• OS performs checks if user space is doing a right thing
• Before performing important ring 0 operations

• E.g., accessing hardware..

OS Syscalls

Ring 3

Library Calls

App

Hardware

int $0x30

CHECK!!
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An Example of Protecting Syscalls
via Call Gate
• How can we protect ‘read()’ system call?

• read(int fd, void *buf, size_t count)

• Read count bytes from a file pointed by fd and store those in buf

• Usage
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An Example of Protecting Syscalls
via Call Gate
• Problem: what will happen if we call…

•  This is trying to overwrite kernel code with your keystroke typing..
• If this was allowed, changing kernel code from Ring 3 is possible!
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How Call Gate Works?

• We can hook all syscalls from Ring 3 at our syscall trap handler 

App

read(0, stack_buffer, 512);

System call gate
(syscall() in JOS)

           sys_write()

   sys_read()

   sys_send()

Trap/syscall()

Check arguments!
User address!

OS

sys_write()

other_func()

sys_read()

sys_send()
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Call Gate

• We can hook all syscalls from Ring 3 at our syscall trap handler 

App

read(0, kernel_address, 512);

System call gate
(syscall() in JOS)

           sys_write()

   sys_read()

   sys_send()

Trap/syscall()

Check arguments!
No! kernel address!
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OS

sys_write()

other_func()

sys_read()

sys_send()

Error!



Test
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Check How System Calls are Invoked in Linux 
Kernel
• Use strace in Linux, e.g., $ strace /bin/ls
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Summary: System Call / Call Gate

• Prevent Ring 3 from accessing hardware directly
• Security reasons!
• OS mediates hardware access via system calls

• You may regard system calls as APIs of an OS

• How to prevent an application from running arbitrary ring 0 operation?
• Call gate

• Modern OS use call gate to protect system calls
• At trap handler, an OS can apply access control to system call request
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Handling Fault: Page Fault

• Faults
• Faulting instruction has not executed (e.g., page fault)

• Resume the execution after handling the fault

•  Resume the execution after handling the fault
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Page Fault: A Case of Handling Faults

• Occurs when paging (address translation) fails
• !(pde&PTE_P) or !(pte&PTE_P): invalid translation

• Write access but !(pte&PTE_W): access violation

• Access from user but !(pte&PTE_U): protection violation
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Page Fault: an Example

• Accessing a Kernel address from User
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Page Fault: an Example

• Accessing a Kernel address from User
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Page Fault: What Does CPU Do?

• CPU let OS know why and where such a page fault happened
• CR2: stores the address of the fault

• Error code: stores the reason of the fault 0xf0100064

1
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CPU/OS Execution Example

• User program accesses 0xf0100064

• CPU generates page fault (pte&PTE_U == 0)
• Put the faulting address on CR2
• Put an error code
• Calls page fault handler in IDT

• OS: page_fault_handler
• Read CR2 (address of the fault, 0xf0100064)
• Read error code (contains the reason of the fault)
• Resolve error (if not, destroy the environment)
• Continue user execution

• User: resume on that instruction (or destroyed by the OS)
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Fault Resume Example:
Stack Overflow
• inc/memlayout.h

• We allocate one (1) page for the user stack

• If you use a large local variable on the stack
• Stack overflow (stack grows down…)

NOT MAPPED!
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Some Idea:
Allocating New Stack Automatically
• Can we detect such an access and allocate a new page for the stack 

automatically?
• Yes

• We will utilize ‘Page Fault’

• Observations
• Stack overflow would be sequential (access pages adjacent to the stack)

• We should catch both read/write access (both should fault)
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Example: New Stack Allocation by Fault 
(User)
• Stack ends at 0xeebfd000

• Suppose the current value of esp (stack) is
• 0xeebfd010

• User program creates a new variable: char buf[32]
• buf = 0xeebfcff0

• Buffer range: 0xeebfcff0 ~ 0xeebfd010

• On accessing buf[0] = ‘1’;
• movb $0x31, (%eax)

• eax = 0xeebfcff0 No translation for 0xeebfc000

•  Need to allocate 0xeebfc000 ~ 0xeebfd000
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STACK

0xeebfd000

0xeebfe000
esp

buf
No mapping!

0xeebfc000



Example: New Stack Allocation by Fault (CPU)

• Lookup page table
• No translation!

• Store 0xeebfcff0 to CR2

• Set error code
• “The fault was caused by a non-present page!”

• Raise page fault exception (interrupt #14) -> call page fault handler

NOT MAPPED!
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Example: New Stack Allocation by Fault (OS)

• Interrupt will make CPU invoke the page_fault_handler()

• Read CR2
•  0xeebfcff0, it seems like the page right next to current stack end

• The current stack end is: 0xeebfd000

• Read error code
• “The fault was caused by a non-present page!”

• Let’s allocate a new page for the stack!
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STACK

0xeebfd000

0xeebfe000

No mapping!



Example: New Stack Allocation by Fault (OS)

• Allocate a new page for the stack
• Struct PageInfo *pp = page_alloc(ALLOC_ZERO);

• Get a new page, and wipe it to have all zero as its contents

• page_insert(env_pgdir, pp, 0xeebfc000, PTE_U|PTE_W);

• Map a new page to that address!

• iret!
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STACK

0xeebfd000

0xeebfe000

0xeebfc000

STACK



Example: New Stack Allocation by Fault 
(User-Return)
• On accessing buf[0] = ‘1’;

• movb $0x31, (%eax)

• eax = 0xeebfcff0 No translation for 0xeebfc000

• Execute the faulting instruction again: buf[0] = ‘1’;
• movb $0x31, (%eax)

• eax = 0xeebfcff0 Now translation is valid!

• Continue to execute the loop..
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0xeebfd000

0xeebfe000

0xeebfc000

STACK

STACK

By exploiting page fault and its handler, we can implement 
automatic allocation of user stack!



Other Useful Examples of Using
Page Fault (in Modern OSes)
• Copy-on-Write (CoW)

• Technique to reduce memory footprint
• Share pages read-only
• Create a private copy when the first write access happens

• Memory Swapping
• Use disk as extra space for physical memory
• Limited RAM Size: 16GB?
• We have a bigger storage: 1T SSD, Hard Disk, online storage, etc.
• Can we store some ‘currently unused but will be used later’ part into the disk?

• Then we can store only the active part of data in memory 
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Copy-on-Write (CoW) to Reduce Memory 
Footprint
• Think about our os2 server

• Will run many /bin/bash, /usr/bin/gdb, /usr/bin/tmux, etc.
• Each of you will run those programs!!

• Do we need to have 110 copies of the same program in memory?

• How can we build an OS to efficiently load them and minimize 
memory usage?
• Share physical pages of the same program!
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Count number of processes running bash, tmux, and gdb



A Program

• .text
• Code area. Read-only and executable

• .rodata
• Data area, Read-only and not executable

• .data
• Data area, Read/Writable (not executable)
• Initialized by some values

• .bss (uninitialized data)
• Data area, Read/Writable (not executable)
• Initialized as 0

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)
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Running the Same Program…

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

Process 1

Process 2

Do we need to copy the same data for
each process creation? 
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Sharing by Read-only

• Set page table to map the same physical address to share contents

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 2
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OK for Read-only Sections

• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

Write

Page fault!
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Page Fault Handler

• Read CR2
• An address that is in the page cache

• Hmm… a fault from one of the shared location!

• Read Error code
• Write on read-only memory

• Hmm… the process requires a private copy! (we actually mark if COW is required in PTE)

• ToDo: create a writable, private copy for that process!
• Map a new physical page (page_alloc, page_insert)
• Copy the contents
• Mark it read/write
• Resume…
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.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 2

Copy–on-Write

• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

Write

Page fault!

.bss (RW-)

COPY!

MAP!

.bss (RW-)
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Copy–on-Write

• How can we distinguish real fault from a CoW fault?

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

Write

Page fault!

.bss (RW-)

COPY!

MAP!

.bss (R--)
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Write

Page fault!

This is the real protection fault



Use Available Flags in PTE

• PTE_COW

• 1000 0000 0000
• 11th-bit is 1
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Copy–on-Write

• How can we distinguish real fault from a CoW fault?

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)
PTE_COW==0

.data (R--)

.bss (R--)

Process 1

Write

Page fault!

.bss (RW-)

COPY!

MAP!

.bss (R--)
PTE_COW==1
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Write

Page fault!

This is the real protection fault



Benefits?

• Can reduce time for copying contents that is already in some physical 
memory (page cache)

• Can reduce actual use of physical memory by sharing code/read-only 
data among multiple processes
• 1,000,000 processes, requiring only 1 copy of .text/.rodata

• At the same time
• Can support sharing of writable pages (if not written at all)

• Can create private pages seamlessly on write
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By exploiting page fault and its handler, we can implement 
copy-on-write, a mechanism that can reduce physical memory 

usage by sharing pages of same contents among
multiple processes.



Memory Swapping

• Memory Hierarchy

DISK
(TB? PB?)

Main Memory
(GB)

Cache
(MB)

Reg 
(KB)

FAST Expensive

SIZE
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Challenge

• Suppose you have 8GB of main memory

• Can you run a program that its program size is 16GB?
• Yes, you can load them part by part

• This is because we do not use all of data at the same time

• Can your OS do this execution seamlessly to your application?
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Memory Swapping
Virtual Memory Physical Memory

0xf0200000

0xf0100000

pgdir

PT

PT
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Swapping – Remove a page…
Virtual Memory Physical Memory

0xf0200000

0xf0100000

pgdir

PT

PT

Access

Page Fault!

DISK 0xf0200000
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Swapping - OS

• Page fault handler
• Read CR2 (get address, 0xf0200000)
• Read error code

• If error code says that the fault is caused by non-present page and

• The faulting page of the current process is stored in the disk
• Lookup disk if it swapped put 0xf0200000 of this environment (process)

• This must be per process because virtual address is per-process resource

• Load that page into physical memory

• Map it and then continue!

49



Swapping – Remove a page…
Virtual Memory Physical Memory

pgdir

PT

PT

Access

Page Fault!

DISK 0xf0200000 READ from DISK

Allocate
New page!

Create new map!
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Continue!



Page Fault

• Is generated when there is a memory error (regarding paging)

• Is an exception that can be recovered
• And user program may resume the execution

• Is useful for implementing
• Automatic stack allocation

• Copy-on-write (will do in Lab4)

• Memory Swapping
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