
CS444/544
Operating Systems II

Lecture 11

Virtualization Summary and Quiz 2 Prep

5/8/2024

1

Acknowledgement: Slides drawn heavily from Yeongjin Jiang

Odds and Ends

• Lab 2 will be graded by this weekend

• Quiz 2 on Monday (more info later)

2

Today’s Topic

• Virtualization -> Concurrency

• OS Three Easy Pieces
• Virtualization (memory, process, user/kernel, etc.)

• Concurrency (multi-threading, multi-process, scheduling, synchronization)

• Persistence (disk, file, snapshot, etc.)

• Do recap on Virtualization

• Quiz 2 Prep.

3

What is an OS?

Applications

Hardware

OS

4

Memory

• 8086 Segmentation – Real Mode
• Address = seg * 16 + offset

• 80386 Segmentation – Protected Mode
• GDT defines base and limit

• seg selects a GDT entry

• Address = GDT[seg].base + offset

Backward compatibility: BIOS will put the code that assumes your CPU as i8086
(a 43-years old 16-bit CPU). So we need to start with 16-bit mode and then

enable 32-bit protected mode, paging, etc…
UEFI does not go through this process; they directly starts with 32-bit or 64-bit

mode, so OSes do not have to handle these things..

5

Virtual Memory

• Paging

• When enabled, all memory address will be translated via

• CR3 -> PDE -> PTE -> Physical Page!

6

Recap – Page Table & Addr Translation

Page number (20-bits)
0x08048

Offset (12-bits)
0x000

01231

Directory Index
(10-bits)

0x20

Table index
(10-bits)

0x48

122231

0x08048000

Page Directory Entry

0 Addr PT

.. Addr PT

0x20 Addr PT

0x3ff Addr PT

Page Table Entry

0 Addr PT

0x48 0x10000

0x49 0x11000

0x4a 0x50000

Virtual Physical

0x8048000 0x10000

0x8049000 0x11000

0x804a000 0x50000

CR3[0x20]

PDE[0x48]

Phy. Page number (20-bits)
0x10000

Offset (12-bits)
0x000

7

pde_t * pd = KADDR(lcr3());
pte_t *pt = KADDR(PTE_ADDR(pd[PDX(va)]))
physaddr_t paddr = PTE_ADDR(pt[PTX(va)]) + PGOFF(va)

x86 Memory Access

8

Why Virtual Memory?

• Three goals
• Transparency: does not need to know system’s internal state

• Program A is loaded at 0x8048000. Can Program B be loaded at 0x8048000?

• Efficiency: do not waste memory; manage memory fragmentation
• Can Program B (288KB) be loaded if 288 KB of memory is free, regardless of its

allocation?

• Protection: isolate program’s execution environment
• Can we prevent an overflow from Program A from overwriting Program B’s data?

9

Paging: Virtual Memory

• Having an indirect table that maps virt-addr to phys-addr
Virtual Physical

0x8048000 0x10000

0x8049000 0x11000

0x804a000 0x14000

0xbffdf000 0x12000

… …

Stack
0xbffdf000

Program code
0x8049000

Program code
0x8048000

Program code
0x804a000

Physical Memory

Program code
0x10000

Program code
0x11000

Program code
0x14000

Stack
0x12000

Virtual-2 Physical-2

0x8048000 0x13000

0x8049000 0x15000

0x804a000 0x16000

0xbffdf000 0x17000

… …

Stack-2
0xbffdf000

Program code-2
0x8049000

Program code-2
0x8048000

Program code-2
0x804a000

Program code-2
0x13000

Program code-2
0x15000

Program code-2
0x16000

Stack-2
0x17000

10

Paging: Virtual Memory

• Having an indirect table that maps virt-addr to phys-addr
Virtual Physical

0x8048000 0x10000

0x8049000 0x11000

0x804a000 0x14000

0xbffdf000 0x12000

… …

Stack
0xbffdf000

Program code
0x8049000

Program code
0x8048000

Program code
0x804a000

Physical Memory

Program code
0x10000

Program code
0x11000

Program code
0x14000

Stack
0x12000

Virtual-2 Physical-2

0x8048000 0x13000

0x8049000 0x15000

0x804a000 0x16000

0xbffdf000 0x17000

… …

Stack-2
0xbffdf000

Program code-2
0x8049000

Program code-2
0x8048000

Program code-2
0x804a000

Program code-2
0x13000

Program code-2
0x15000

Program code-2
0x16000

Stack-2
0x17000

Transparency: does not need to know system’s internal state
Program A is loaded at 0x8048000.

Can Program B be loaded at 0x8048000?

11

Paging: Virtual Memory

• Having an indirect table that maps virt-addr to phys-addr
Virtual Physical

0x8048000 0x10000

0x8049000 0x11000

0x804a000 0x14000

0xbffdf000 0x12000

… …

Stack
0xbffdf000

Program code
0x8049000

Program code
0x8048000

Program code
0x804a000

Physical Memory

Program code
0x10000

Program code
0x11000

Program code
0x14000

Stack
0x12000

Virtual-2 Physical-2

0x8048000 0x13000

0x8049000 0x15000

0x804a000 0x16000

0xbffdf000 0x17000

… …

Stack-2
0xbffdf000

Program code-2
0x8049000

Program code-2
0x8048000

Program code-2
0x804a000

Program code-2
0x13000

Program code-2
0x15000

Program code-2
0x16000

Stack-2
0x17000

Efficiency: do not waste memory
Can Program B (288KB) be loaded if

only 288 KB of memory is free, regardless of its allocation?

12

Paging: Virtual Memory

Stack
0xbffdf000

Program code
0x8049000

Program code
0x8048000

Program code
0x804a000

Stack-2
0xbffdf000

Program code-2
0x8049000

Program code-2
0x8048000

Program code-2
0x804a000

Protection: isolate program’s execution environment
Can we prevent an overflow from Program A from

overwriting Program B’s data?

No mappings,
FAULT!

No mappings,
FAULT!

13

Kernel (Ring 0)

• Runs with the highest privilege level (Ring 0)

• Configures system (devices, memory, etc.)

• Manages hardware resources
• Disk, memory, network, video, keyboard, etc.

• Manages other jobs
• Processes and threads

• Serves as trusted computing base (TCB)
• Set privilege, restrict other jobs from doing something bad, etc.

14

User Level (Ring 3)

• Runs with a restricted privilege (Ring 3)
• The privilege level for running an application…

• Most of our regular applications runs in this ring level

• Cannot access kernel memory
• Can only access pages set with PTE_U

• Cannot talk directly to hardware devices
• Kernel must mediate the access

15

A High-level Overview of
User/Kernel Execution

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

16

A High-level Overview of
User/Kernel Execution

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

printf()

sys_write()

A library call in ring 3

A system call,
From ring 3 to ring 0

do_sys_write()A kernel function

17

A High-level Overview of
User/Kernel Execution

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

printf()

sys_write()

A library call in ring 3

A system call,
From ring 3 to ring 0

do_sys_write()

iret (ring 0 to ring 3)

ret (ring 3)

A kernel function

18

User Execution Strawman 2’

• What if a process runs

OS Kernel (Ring 0)

Ring 3

No such yield()
Too long

Much wait

19

User Execution Strawman 2’

• What if a process runs

OS Kernel (Ring 0)

Ring 3

No such yield()
Too long

Much wait

20

Recap: Timer Interrupt and Multitasking

• Preemptive Multitasking (Lab 4)

• CPU generates an interrupt to
force execution at kernel after
some time quantum
• E.g., 1000Hz, on each 1ms..

OS Kernel (Ring 0)

Ring 3

After 1ms

Timer interrupt!
21

Recap: Timer Interrupt and Multitasking

• Preemptive Multitasking (Lab 4)

• CPU generates an interrupt to
force execution at kernel after
some time quantum
• E.g., 1000Hz, on each 1ms..

• Guaranteed execution in kernel
• Let kernel mediate resource

contention

OS Kernel (Ring 0)

Ring 3

22

Recap: Timer Interrupt and Multitasking

• Preemptive Multitasking (Lab 4)

• CPU generates an interrupt to
force execution at kernel after
some time quantum
• E.g., 1000Hz, on each 1ms..

• Guaranteed execution in kernel
• Let kernel mediate resource

contention

OS Kernel (Ring 0)

Ring 3

Schedule()

iret (ring 0 to ring 3)

23

User/Kernel Switch

• System call
• User calls Kernel APIs

• Kernel mediates API access (checks legitimacy at call gate)

• How switch?
• At the call gate, store trap frame

• Stores all registers, and other states

• On returning to user (iret)
• Restore all information from trap frame

OS Syscalls

Ring 3

Library Calls

App

Hardware

int $0x30

CHECK!!

24

User/Kernel Switch

• Interrupts
• Could come from hardware (when it is not a software interrupt)

• Think about the timer interrupt
• Let OS do context switch!

• Steps
• Stops current process (stores trapframe)

• Runs kernel for handling the interrupt (refer to IDT)

• Resumes previous (or new) process (iret)

25

Faults

• An error that OS can recover

• Example
• Page fault

• Copy-on-write fork

• Memory Swapping

26

Copy-on-Write Sharing

• Store one copy of file in the memory

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

Process 1

Process 2

Do we need to copy the same data for
each process creation?

27

Sharing by Read-only

• Set page table to map the same physical address to share contents

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 2

28

Generate a Page Fault on Writing Attempt

• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

Write

Page fault!

29

Copy–on-Write

• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

Write

Page fault!

.bss (RW-)

COPY!

MAP!

.bss (RW-)

30

A Challenge of Having Small Physical Memory

• Suppose you have 8GB of main memory

• Can you run a program that its program size is 16GB?
• Yes, you can load them part by part

• This is because we do not use all of data at the same time

• Can your OS do this execution seamlessly to your application?

31

Swapping
Virtual Memory Physical Memory

0xf0200000

0xf0100000

pgdir

PT

PT

32

Swapping – Remove a page…
Virtual Memory Physical Memory

0xf0200000

0xf0100000

pgdir

PT

PT

Access

Page Fault!

DISK 0xf0200000

33

Swapping – Remove a page…
Virtual Memory Physical Memory

0xf0200000
pgdir

PT

PT

Access

Page Fault!

DISK 0xf0200000 READ from DISK

Allocate
New page!

Create new map!

34

Continue!

Quiz 2

• Monday (5/13 from 8:00am to 11:59pm, 90 mins, 2 attempts)
• Open materials (slides, videos, code, and textbook)

• You will have 2 attempts for the quiz

35

Quiz 2 Coverage

• JOS Lab 2 (Virtual Memory Management)

• JOS Lab 3 (User/Kernel, System Call and Interrupt Handling)

• Lecture 8: User/Kernel Context Switch

• Lecture 9: Handling Interrupt & Exceptions

• Lecture 10: System Calls, Call Gate, and Page Fault

• Lecture 11: Virtualization Review

36

Example Questions

• Memory Protection
• How does an OS/CPU apply access control to the virtual memory system?

• Protected mode (DPL), Page directory / page table (permission flags, PTE_W & PTE_U)

• How does an OS protect itself against the attacks from application code?
• Removing PTE_U from PDE or PTE

• How does an OS protect the memory area which is supposed to be read-only
from write attempts?
• Removing PTE_W from PDE or PTE

• How does an OS isolate the memory space of a process from others?
• Having a new page directory / page tables

37

Example Questions

• Memory Overhead Calculation
• We have the following mapping for a program. How much of physical memory

is required to support virtual to physical address translation for this program
(get the minimal total size of page directory and page tables that enables this
allocation)?

Area Start virtual addr End virtual addr Size

.text (code) 0x800000 0x804000 0x4000

.data (read/write) 0x900000 0x902000 0x2000

.bss 0xc00000 0xd00000 0x100000

38

Example Questions

• Memory Overhead Calculation

Area Start virtual addr End virtual addr Size

.text (code) 0x800000 0x804000 0x4000

.data (read/write) 0x900000 0x902000 0x2000

.bss 0xc00000 0xd00000 0x100000

Index Address range PTE

0 0x0 ~ 0x400000 invalid

1 0x400000 ~ 0x800000 invalid

2 0x800000 ~ 0xc00000 valid

3 0xc00000 ~ 0x1000000 valid

… … Invalid

0x3ff 0xffc00000 ~ 0xffffffff Invalid

1 page directory: 4KB
2 page tables: 2 * 4KB = 8KB

4KB + 8KB = 12KB

39

Example Questions

• User / Kernel Switch
• How does an OS get back the execution from the user while the user runs

while(1);?
• Timer interrupt will preempt the execution from user to kernel

• How does the user program access the hardware? What’s the job of the OS in
this process?
• OS offers system calls (APIs available in OS)

• User program invokes system call via generating a software interrupt

• OS checks access to resources
• File, network, memory, etc.

40

Example Questions

• For an interrupt that has an error code,

• Which part of TrapFrame is prepared by the CPU?
• tf_ss, tf_esp, tf_eflags, tf_cs, tf_eip and tf_err

• Which part of TrapFrame is prepared by JOS?
• All others: tf_trapno, tf_ds, tf_es, tf_regs

41

Example Questions

• Page Fault
• We run 1,000,000 instances of /bin/bash in our os2 server, running Linux

enabled with copy-on-write fork(). How many copies of the code (the read-
only part) of /bin/bash exist in the physical memory?
• One, shared via copy-on-write

• How can an OS run a program that requires more memory than a machine’s
physical memory?
• We can store currently unused memory pages in the disk (swap-out)

• Accessing to swapped-out pages will generate a page fault

• The OS can search for swapped-out pages, and fill a page in if exists (swap-in)

• Resumes user execution!

42

Tips for Lab 3

43

Pic credit to Jonathan Keller

Tips for Lab 3

44

Pic credit to Adrian Baker

	Slide 1: CS444/544 Operating Systems II
	Slide 2: Odds and Ends
	Slide 3: Today’s Topic
	Slide 4: What is an OS?
	Slide 5: Memory
	Slide 6: Virtual Memory
	Slide 7: Recap – Page Table & Addr Translation
	Slide 8: x86 Memory Access
	Slide 9: Why Virtual Memory?
	Slide 10: Paging: Virtual Memory
	Slide 11: Paging: Virtual Memory
	Slide 12: Paging: Virtual Memory
	Slide 13: Paging: Virtual Memory
	Slide 14: Kernel (Ring 0)
	Slide 15: User Level (Ring 3)
	Slide 16: A High-level Overview of User/Kernel Execution
	Slide 17: A High-level Overview of User/Kernel Execution
	Slide 18: A High-level Overview of User/Kernel Execution
	Slide 19: User Execution Strawman 2’
	Slide 20: User Execution Strawman 2’
	Slide 21: Recap: Timer Interrupt and Multitasking
	Slide 22: Recap: Timer Interrupt and Multitasking
	Slide 23: Recap: Timer Interrupt and Multitasking
	Slide 24: User/Kernel Switch
	Slide 25: User/Kernel Switch
	Slide 26: Faults
	Slide 27: Copy-on-Write Sharing
	Slide 28: Sharing by Read-only
	Slide 29: Generate a Page Fault on Writing Attempt
	Slide 30: Copy–on-Write
	Slide 31: A Challenge of Having Small Physical Memory
	Slide 32: Swapping
	Slide 33: Swapping – Remove a page…
	Slide 34: Swapping – Remove a page…
	Slide 35: Quiz 2
	Slide 36: Quiz 2 Coverage
	Slide 37: Example Questions
	Slide 38: Example Questions
	Slide 39: Example Questions
	Slide 40: Example Questions
	Slide 41: Example Questions
	Slide 42: Example Questions
	Slide 43: Tips for Lab 3
	Slide 44: Tips for Lab 3

