CS444/544
Operating Systems ||

Lecture 12

Multi-threading and Synchronization
5/15/2024

Acknowledgement: Slides drawn heavily from Yeongjin Jiang

| Oregon State
&

el

Odds and Ends

* Lab 4 posted
* Lab 2 grades posted

* Lab 3 due Monday (5/20) midnight

Quiz 2

Process/Thread/Synchronization

e \We will learn:

Why concurrency is useful?

Differences between Process and Thread

Data racing issue

Synchronization (Mutual Exclusion)

Single-threaded CPU Performance

* # of transistors
* Increasing linearly

* Performance

35 YEARS OF MICROPROCESSOR TREND DATA

10

* Not increasing linearly... —

7

10° |

10°

10*

, ' Transistors
. (thousands)

: Single-thread

. Performance
. (SpecINT)

10° |

10° |

Frequency
- vpiCal FOwe
- (Watts)

* Number of
:' Cores

1975 1980 1985 1990 1995 2000 2105 2010 2015

5
Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

CPU Speed Capped by Frequency/Power

* How to get a better performance?

AMDD

RYZ=N

<intel') THREADRIPPER

9th Gen
Intel® Core™ jg

1
e

CPU ¢: CPU

Core iS5 Core :S Core

L3 Cache
ayoe) ¢
L3 Cach
ayode) g
L3 Cach
ayoed g1

Ring Intcnt. Ring Intenth Ring lntcn,t!‘ |Ring lnt‘cn,t;._ 5‘,
Agents Agents Agents - Agents @3

CPU
Core”’

CPU :¢ CPU CPU
Core °~“ Core °~ Core

L3 Cache
yaed €1
3 Cache

ayoe) £7

L3 Cache
4aed €1

CPU Speed Capped by Frequency/Power

. How to get a better oerformance?

s Task Manager

File Options View

AND Ryzen Throadripper

Processes - App history Startup Users Details Services

AMDN

CPU E P : Z
| 99% 2.98 GHz CPU AMD Ryzen Threadripper 2990WX 32-Core Processor ; - R Y = N

Logical processors THReEADRIFPrPER

Memo
7.8/31.9 GB (24%)

"W Disk 0 (C)
[60%

i ‘ Ethernet

S: 0 R: 0 Kbps

Wi-Fi

Not connected

Bluetooth

Not connected

GPUO
NVIDIA GeForce GTX 10¢
1%

Utilization Speed Base speed 3.00 GHz
99% 298 GHz Jockets !

Cores 32
Processes Threads Handles Logical processors: 64

1 53 2983 51 201 Virtualization Disabled

Hyper-V support: Yes

Up time ek 30MB
0:21:07:26 L2 cache: 16.0 MB
L3 cache: 64.0M8

Fewer details @ Open Resource Menitor

CPU Speed Capped by Frequency/Power

e How taget a hetter nerformance?
1 [1 17 [1 331L 1 49 []
2 [1 18[1 3410 1 50 L[1
3 [1 19[1 351 1 51 [1
4 [1 20[1 36[1 52 []
5 [1 21 [1 37 [1 53[]
6 [1 22 [1 38 [1 54]
7 [1 23[1 391 1 55 1[] o=
8 [1 240 1 40[1 56 L[1
9 [1 5[1 41 [1 57 L 1
10 [1 26 [1 42 [1 58 [] &
11 [1 27 [1 43 [1 59 [1
12 [1 28 [1 44] 60 [1
13 [1 29[1 45[1 61[1 |
14 [1 30[1 46 [1] ©62[1 | o
15 [1 31 [1 47 [] 63 [1 |
2 16 [1 32 [1 48[1] o4 [] e &
2l Mem[11/111] 1 Tasks: 76, 627 ; 1 running T
Swp[] Load average: .01 0.01 0.00 T ‘i_j;|j;
Uptime: 23 days, 15:34:19 - [e

Motivation for Concurrency

* Trend in CPU
* Same clock speed, more CPU cores

* Increase System Performance

 Run many jobs at the same time to fully utilize
multiple cores

* How to increase application performance?

* Run multiple functions as separate jobs at the
same time!

* Processes, Threads, etc...

5 YEARS OF MICROPROCESSOR TREND DATA

10" |
6:

5 f

76 ISR SRR AR SRR S S Sy, 4

z 5 5 ; z De tiA. z
E % 5 Single-thread

10" g

/’;’ Transistors
i (thousands)

. Performance
. (SpecINT)

_ Typical Powel
¢ (Watts)

« -~~~ 7 Number of
" Cores

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten

Dotted line extrapolations by C. Moore

Options for Concurrency

* Process
* Run program as a separate instance

* Thread

* Run program as a same instance

-

&
=

0
=]

Process

 Fach execution runs in an isolated
environment

* Does not share memory space
* Each has own page table

* Requires Inter-Process
Communication for data sharing

* File(), Pipe(), socket(), shared
memory, etc..

11

Process (Environment in JOS)
Process creates a new PRIVATE memory space

UXSTACK

EMPTY

USTACK

env_create() EMPTY

Global
int counter;

Parent Child
Process (Environment in JOS)

Kernel Kernel Fork() creates new process by copying memory space
Process creates a new PRIVATE memory space

#include <stdio.h>
#include <unistd.h>

int counter;
volatile int value = 1;

UXSTACK UXSTACK

EMPTY

USTACK counter += value;

EMPTY y Parent: 1000000
int main() { Child: 1000000
Free... pid_t pid = fork();

countup();
printf("%s: ", pid ? "Parent" : " Child", counter);

EMPTY

USTACK

EMPTY

void countup() {
for(int 1=0; 1<1000000; ++i) {

Free...

Not sharing
variables

Global < > Global
int counter: int counter;

Process (Pros/Cons)

* Pros

* Do not have to modify program to achieve parallelism
* Just run multiple instances, or fork()!

e Cons

* Use some additional memory to run same programs
* Any write will incur memory duplication even in CoW fork()

* Cannot directly read memory of other processes
* Inter-process Communication (IPC) is available, but slow

* Use
 Suitable for parallel ‘isolated’ execution
* Not suitable for parallel execution on shared data

14

Can We Share a Memory Space and Run Jobs
in Parallel at the Same Time?

* Yes! Thread: here | am!

e What is a thread?

* Process: creates a new PRIVATE memory space and run concurrently
* Thread: creates a SHARED memory space and run concurrently

* SHARE?

* Can access the same memory space, e.g., global variables, etc.

15

Thread: How Can We Share Memory Space
Among Threads?

* Process Creation via Fork()

* Naive design: copy all physical pages, and create a new page directory/table that has
the same virtual mapping (to new, corresponding physical pages)

* Copy-on-write: do not copy all physical pages but keep the same mappings by read-

only at the new page directory/table and provide a private copy when write on COW
page occurs...

* Thread Creation
* Get a new execution environment
* Assign the same page directory/table (e.g., assign the same CR3)

» Create a new stack / storage for register context to store execution context
separately

* Use less memory than fork()...

16

Thread

Kernel

UXSTACK

EMPTY

USTACK

EMPTY

Free...

Global

pthread_create()

The same variable..

#include <stdio.h>
#include <unistd.h>
#include <pthread.h>

int counter;
volatile int value = 1;
void * countup(void *arg) {
for(int 1=0; 1<1000000; ++1) {
counter += value;
}

printf("%s: %d\n", arg ? "Parent" : " Child", counter)

}

int main() {
pthread_t thread;
pthread_create(&thr2ad, NULL, countup, NULL);
countup((void*) 1)j
pthread_join(thread, NULL);

“——— Add a new stacl¢!

Adding value..

Heap
Global

int counter:

int counter:

1
1
Program ¥

I
I
I
I
I
|
I
I
L
I
1
L
I
I
L

Thread (Pros/Cons)

* Pros

* Threads can directly access memory space of other threads
* Sharing data!

* Require less memory than fork()
* A stack and few more..

* Cons
* No isolated execution; the programmer needs to be careful

e Use

 Suitable for parallel execution on shared data
* Not suitable for having a private execution

18

A Child: 1092487
#include <pthread.h> Parent: 1221966
- : int counter; Child: 975822
e volatile int value = 1;
Synchronization Is:g._u_g _______ tile tnt : Parent: 1081479

void * countup(void *arg) {
for(int 1=0; 1<1000000; ++1) {
counter += value;
}

printf("%s: %d\n", arg ? "Parent" : " Child", counter)

I
I
Kernel I Kernel
I
I

}

int main() {
pthread_t thread;
pthread_create(&thr2ad, NULL, countup, NULL);

UXSTACK

1
1
Program 1B

EMPTY countup((void*) 1)j
USTACK pthread_join(thread, NULL);
EMPTY pthread_create()
T Add a new stacld

Free... | Free. :

|

: : Adding value..

" |

i |

I Heap :

. L
Global The same variable.. s Clobal i
int counter: L__int counter;

|

|

L

Data Race

A thread’s execution result could be inconsistent if other
threads intervene its execution...

* counter += value
* odx

value;

mov 0x20087b(%rip) ,%edx # 0x201010 <value>
*eax = counter; mov 0x20087d(%rip),%eax # 0x201018 <counter>
e cax = edx + eax; add %edx,%eax

mov %eax,0x200875(%rip) # 0x201018 <counter>

* counter = eax;

20

Data Race Example (No race)

Thread 1 Thread 2
e counter += value sdx=value I
* edx = value; T eax= counter NN
* eax = counter; m cax = 1
* eax = edx + eax; SRS ounter = 1

* counter = eax;

edx = 1 edx = value
« Assume counter = 0 at start, eax = 1 eax = counter
and value = 1; eax = 2 eax = edx + eax

counter = 2 EIETT

\/ OK, consistent!

21

Data Race Example (Race cond.)

e counter += value
* edx = value;
°* eax counter;
* eax = edx + eax;

* counter = eax;

e Assume counter = 0 at start,
and value = 1;

Thread 1

edx = value
]

eax = counter

|
eax = edx + eax

counter = eax

22

edx = 1

eax = 0

eax = 1

‘ edx =1
eax = 0
eax = 1
counter =
—
counter = 1

Overwrite, inconsistent

1

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

Data Race Example (Race cond.)

e counter += value
* edx = value;
°* eax counter;
* eax = edx + eax;

* counter = eax;

e Assume counter = 0 at start,
and value = 1;

Thread 1

edx = value edx = 1
]

eax = counter eax = 0

|
- G-I cax = 1

edx = 1

eax = 0

counter = eax counter = 1

eax 1
Zounter = 1

This load must run after
Storing 203f a counter..

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

Data Race Example (Race cond.)

e counter += value
* edx = value;
°* eax counter;
* eax = edx + eax;

* counter = eax;

e Assume counter = 0 at start,
and value = 1;

Thread 1
edx = value

eax = counter

eax = edx + eax

counter = eax

24

edx = 1
eax = 0
eax = 1
edx =1
counter =1
*
eax = 1
eax = 2
counter = 2

m

Thread 2

edx = value

eax = counter
|

eax = edx + eax
|

counter = eax

How to Prevent Data Racing?

I Thread 1 I Thread 2

Critical Section
edx = value

* Mutual Exclusion / Critical Section
 Combine multiple instructions as a chunk
* Let only one chunk execution runs
* Block other executions

eax = counter
eax = edx + eax

counter = eax

Critical Section

edx = value
]

eax = counter
|

eax = edx + eax
|

counter = eax

25

How to Prevent Data Racing?

* Mutual Exclusion / Critical Section

 Combine multiple instructions as a chunk
* Let only one chunk execution runs

* Block other executions

26

Thread 1

Thread 2

Critical Section

edx = value
]

eax = counter
|

eax = edx + eax
]

counter = eax

Critical Section
edx = value

eax = counter
eax = edx + eax

counter = eax

Would Mutex Render Threading Useless?

Thread 1

Critical Section

Critical Section

Critical Section

Critical Section

Critical Section

27

Thread 1

Critical Section

Exclusion

Critical Section

Critical Section

Thread 2

Exclusion

Critical Section

Exclusion

Exclusion

Critical Section

Critical Section

Parallel Job

Use Critical Section Only If Required

Thread 1 ; Thread 2

Critical Section Exclusion Parallel Job

Parallel Job

Critical Section

Parallel Job

Parallel Job

Critical Section

Parallel Job
Parallel Job

Parallel Job

28

Caveat: Apply Mutex only if required

* Mutex can synchronize multiple threads and yield consistent result
* No read before previous thread stores the shared data

o |

A

* Making the entire program as critical section is meaningless
* Running time will be the same as single-threaded execution

* Apply critical section as short as possible to maximize benefit of
having concurrency
* Non-critical sections will run concurrently!

29

Enabling Mutual Exclusion

e cli, in asingle processor computer * counter += value

e Clear interrupt bit *ell
: , o , * edx = value;
* CPU will never get interrupt until it runs sti 3
. . * eax = counter;
* Set interrupt bit . cax = edx + eax:
* counter = eax;
* sti

* There will be no other execution

* Any problems?
* Multi CPU?
e cli/sti availablein Ring 0

30

Mutex (Mutual Exclusion)

e Lock * counter += value
* Prevent others enter the critical section * lock()
Unlock * edx = value;
o
nioc . * ecaxX = counter;
* Release the lock, let others acquire the lock e cax = edx 4+ eax:
* counter = eax;

unlock ()

31

Mutex (Mutual Exclusion)

e Lock * counter += value
* Prevent others enter the critical section * lock()
* edx = value;
¥ , * ecaxX = counter;
[)
OW: _ o N _ * cax = edx + eax;
* Check if any other execution in the critical section e counter = eax:

e |[fitis, wait; busy-waiting with while()
* |f not, acquire the lock!

e Others cannot get into the critical section
* Run critical section

* Unlock, let other execution know that | am out!

* unlock ()

32

Mutex Example

Thread 1

Critical Section
lock()

edx = value

eax = counter

eax = edx + eax

counter = eax

unlock()

] Critical Section
wait!

lock()

Run!
edx = value

eax = counter

eax = edx + eax

counter = eax

unlock()
33

Thread 2

Critical Section

lock()

edx = value

eax = counter
S

eax = edx + eax
counter = eax

unlock()

wait!

Run!

Summary

* Single-threaded CPU performance does not increase linearly anymore
* CPU contains many cores to speed up by concurrent execution

* Process and Thread are two options for exploiting concurrency
* Process: new page directory/table; do not share memory; isolated
* Thread: shares CR3 (page directory/table); shared memory; not isolated

* Data race could happen if two or more threads access same memory
* Mutex is one way of avoiding this..

	Slide 1: CS444/544 Operating Systems II
	Slide 2: Odds and Ends
	Slide 3: Quiz 2
	Slide 4: Process/Thread/Synchronization
	Slide 5: Single-threaded CPU Performance
	Slide 6: CPU Speed Capped by Frequency/Power
	Slide 7: CPU Speed Capped by Frequency/Power
	Slide 8: CPU Speed Capped by Frequency/Power
	Slide 9: Motivation for Concurrency
	Slide 10: Options for Concurrency
	Slide 11: Process
	Slide 12: Process (Environment in JOS)
	Slide 13: Process (Environment in JOS)
	Slide 14: Process (Pros/Cons)
	Slide 15: Can We Share a Memory Space and Run Jobs in Parallel at the Same Time?
	Slide 16: Thread: How Can We Share Memory Space Among Threads?
	Slide 17: Thread
	Slide 18: Thread (Pros/Cons)
	Slide 19: Synchronization Issue..
	Slide 20: Data Race
	Slide 21: Data Race Example (No race)
	Slide 22: Data Race Example (Race cond.)
	Slide 23: Data Race Example (Race cond.)
	Slide 24: Data Race Example (Race cond.)
	Slide 25: How to Prevent Data Racing?
	Slide 26: How to Prevent Data Racing?
	Slide 27: Would Mutex Render Threading Useless?
	Slide 28: Use Critical Section Only If Required
	Slide 29: Caveat: Apply Mutex only if required
	Slide 30: Enabling Mutual Exclusion
	Slide 31: Mutex (Mutual Exclusion)
	Slide 32: Mutex (Mutual Exclusion)
	Slide 33: Mutex Example
	Slide 34: Summary

