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Odds and Ends

* Lab 4 posted
* Lab 2 grades posted

* Lab 3 due Monday (5/20) midnight



Quiz 2



Process/Thread/Synchronization

e \We will learn:

Why concurrency is useful?

Differences between Process and Thread

Data racing issue

Synchronization (Mutual Exclusion)



Single-threaded CPU Performance

* # of transistors
* Increasing linearly

* Performance
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CPU Speed Capped by Frequency/Power

* How to get a better performance?
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CPU Speed Capped by Frequency/Power

. How to get a better oerformance?

s Task Manager

File Options View

AND Ryzen Throadripper

Processes - App history Startup Users Details Services
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CPU Speed Capped by Frequency/Power

e How taget a hetter nerformance?
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Motivation for Concurrency

* Trend in CPU
* Same clock speed, more CPU cores

* Increase System Performance

 Run many jobs at the same time to fully utilize
multiple cores

* How to increase application performance?

* Run multiple functions as separate jobs at the
same time!

* Processes, Threads, etc...
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Options for Concurrency

* Process
* Run program as a separate instance

* Thread

* Run program as a same instance

-
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Process

 Fach execution runs in an isolated
environment

* Does not share memory space
* Each has own page table

* Requires Inter-Process
Communication for data sharing

* File(), Pipe(), socket(), shared
memory, etc..
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Process (Environment in JOS)
Process creates a new PRIVATE memory space

UXSTACK

EMPTY

USTACK

env_create() EMPTY

Global
int counter;




Parent Child
Process (Environment in JOS)

Kernel Kernel Fork() creates new process by copying memory space
Process creates a new PRIVATE memory space

#include <stdio.h>
#include <unistd.h>

int counter;
volatile int value = 1;

UXSTACK UXSTACK

EMPTY

USTACK counter += value;

EMPTY y Parent: 1000000
int main() { Child: 1000000
Free... pid_t pid = fork();

countup();
printf("%s: ", pid ? "Parent" : " Child", counter);

EMPTY

USTACK

EMPTY

void countup() {
for(int 1=0; 1<1000000; ++i) {

Free...

Not sharing
variables

Global < > Global
int counter: int counter;




Process (Pros/Cons)

* Pros

* Do not have to modify program to achieve parallelism
* Just run multiple instances, or fork()!

e Cons

* Use some additional memory to run same programs
* Any write will incur memory duplication even in CoW fork()

* Cannot directly read memory of other processes
* Inter-process Communication (IPC) is available, but slow

* Use
 Suitable for parallel ‘isolated’ execution
* Not suitable for parallel execution on shared data
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Can We Share a Memory Space and Run Jobs
in Parallel at the Same Time?

* Yes! Thread: here | am!

e What is a thread?

* Process: creates a new PRIVATE memory space and run concurrently
* Thread: creates a SHARED memory space and run concurrently

* SHARE?

* Can access the same memory space, e.g., global variables, etc.
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Thread: How Can We Share Memory Space
Among Threads?

* Process Creation via Fork()

* Naive design: copy all physical pages, and create a new page directory/table that has
the same virtual mapping (to new, corresponding physical pages)

* Copy-on-write: do not copy all physical pages but keep the same mappings by read-

only at the new page directory/table and provide a private copy when write on COW
page occurs...

* Thread Creation
* Get a new execution environment
* Assign the same page directory/table (e.g., assign the same CR3)

» Create a new stack / storage for register context to store execution context
separately

* Use less memory than fork()...
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Thread

Kernel

UXSTACK

EMPTY

USTACK

EMPTY

Free...

Global

pthread_create()

The same variable..

#include <stdio.h>
#include <unistd.h>
#include <pthread.h>

int counter;
volatile int value = 1;
void * countup(void *arg) {
for(int 1=0; 1<1000000; ++1) {
counter += value;
}

printf("%s: %d\n", arg ? "Parent" : " Child", counter)

}

int main() {
pthread_t thread;
pthread_create(&thr2ad, NULL, countup, NULL);
countup((void*) 1)j
pthread_join(thread, NULL);

“——— Add a new stacl¢!

Adding value..

Heap
Global

int counter:

int counter:

1
1
Program ¥

I
I
I
I
I
|
I
I
L
I
1
L
I
I
L



Thread (Pros/Cons)

* Pros

* Threads can directly access memory space of other threads
* Sharing data!

* Require less memory than fork()
* A stack and few more..

* Cons
* No isolated execution; the programmer needs to be careful

e Use

 Suitable for parallel execution on shared data
* Not suitable for having a private execution
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A Child: 1092487
#include <pthread.h> Parent: 1221966
- : int counter; Child: 975822
e volatile int value = 1;
Synchronization Is:g._u_g _______ tile tnt : Parent: 1081479

void * countup(void *arg) {
for(int 1=0; 1<1000000; ++1) {
counter += value;
}

printf("%s: %d\n", arg ? "Parent" : " Child", counter)

I
I
Kernel I Kernel
I
I

}

int main() {
pthread_t thread;
pthread_create(&thr2ad, NULL, countup, NULL);

UXSTACK

1
1
Program 1B

EMPTY countup((void*) 1)j
USTACK pthread_join(thread, NULL);
EMPTY pthread_create()
T Add a new stacld

Free... | Free. :

|

: : Adding value..

" |

i |

I Heap :

. L
Global The same variable.. s Clobal i
int counter: L__int counter;

|

|

L




Data Race

A thread’s execution result could be inconsistent if other
threads intervene its execution...

* counter += value
* odx

value;

mov 0x20087b(%rip) ,%edx # 0x201010 <value>
*eax = counter; mov  0x20087d(%rip),%eax # 0x201018 <counter>
e cax = edx + eax; add %edx,%eax

mov %eax,0x200875(%rip) # 0x201018 <counter>

* counter = eax;

20



Data Race Example (No race)

Thread 1 Thread 2
e counter += value sdx=value I
* edx = value; T eax= counter NN
* eax = counter; m cax = 1
* eax = edx + eax; SRS ounter = 1

* counter = eax;

edx = 1 edx = value
« Assume counter = 0 at start, eax = 1 eax = counter
and value = 1; eax = 2 eax = edx + eax

counter = 2 EIETT

\/ OK, consistent!
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Data Race Example (Race cond.)

e counter += value
* edx = value;
°* eax counter;
* eax = edx + eax;

* counter = eax;

e Assume counter = 0 at start,
and value = 1;

Thread 1

edx = value
]

eax = counter

|
eax = edx + eax

counter = eax

22

edx = 1

eax = 0

eax = 1

‘ edx =1
eax = 0
eax = 1
counter =
—
counter = 1

Overwrite, inconsistent

1

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax




Data Race Example (Race cond.)

e counter += value
* edx = value;
°* eax counter;
* eax = edx + eax;

* counter = eax;

e Assume counter = 0 at start,
and value = 1;

Thread 1

edx = value edx = 1
]

eax = counter eax = 0

|
- G-I cax = 1

edx = 1

eax = 0

counter = eax counter = 1

eax 1
Zounter = 1

This load must run after
Storing 203f a counter..

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax




Data Race Example (Race cond.)

e counter += value
* edx = value;
°* eax counter;
* eax = edx + eax;

* counter = eax;

e Assume counter = 0 at start,
and value = 1;

Thread 1
edx = value

eax = counter

eax = edx + eax

counter = eax
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edx = 1
eax = 0
eax = 1
edx =1
counter =1
\\\\\*
eax = 1
eax = 2
counter = 2

m

Thread 2

edx = value

eax = counter
|

eax = edx + eax
|

counter = eax




How to Prevent Data Racing?

I Thread 1 I Thread 2

Critical Section
edx = value

* Mutual Exclusion / Critical Section
 Combine multiple instructions as a chunk
* Let only one chunk execution runs
* Block other executions

eax = counter
eax = edx + eax

counter = eax

Critical Section

edx = value
]

eax = counter
|

eax = edx + eax
|

counter = eax
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How to Prevent Data Racing?

* Mutual Exclusion / Critical Section

 Combine multiple instructions as a chunk
* Let only one chunk execution runs

* Block other executions

26

Thread 1

Thread 2

Critical Section

edx = value
]

eax = counter
|

eax = edx + eax
]

counter = eax

Critical Section
edx = value

eax = counter
eax = edx + eax

counter = eax




Would Mutex Render Threading Useless?

Thread 1

Critical Section

Critical Section

Critical Section

Critical Section

Critical Section
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Thread 1

Critical Section

Exclusion

Critical Section

Critical Section

Thread 2

Exclusion

Critical Section

Exclusion

Exclusion

Critical Section




Critical Section

Parallel Job

Use Critical Section Only If Required

Thread 1 ; Thread 2

Critical Section Exclusion Parallel Job

Parallel Job

Critical Section

Parallel Job

Parallel Job

Critical Section

Parallel Job
Parallel Job

Parallel Job

28



Caveat: Apply Mutex only if required

* Mutex can synchronize multiple threads and yield consistent result
* No read before previous thread stores the shared data

o |

A

* Making the entire program as critical section is meaningless
* Running time will be the same as single-threaded execution

* Apply critical section as short as possible to maximize benefit of
having concurrency
* Non-critical sections will run concurrently!

29



Enabling Mutual Exclusion

e cli, in asingle processor computer * counter += value

e Clear interrupt bit *ell
: , o , * edx = value;
* CPU will never get interrupt until it runs sti 3
. . * eax = counter;
* Set interrupt bit . cax = edx + eax:
* counter = eax;
* sti

* There will be no other execution

* Any problems?
* Multi CPU?
e cli/sti availablein Ring 0

30



Mutex (Mutual Exclusion)

e Lock * counter += value
* Prevent others enter the critical section * lock()
Unlock * edx = value;
o
nioc . * ecaxX = counter;
* Release the lock, let others acquire the lock e cax = edx 4+ eax:
* counter = eax;

unlock ()

31



Mutex (Mutual Exclusion)

e Lock * counter += value
* Prevent others enter the critical section * lock()
* edx = value;
¥ , * ecaxX = counter;
[ )
OW: _ o N _ * cax = edx + eax;
* Check if any other execution in the critical section e counter = eax:

e |[fitis, wait; busy-waiting with while()
* |f not, acquire the lock!

e Others cannot get into the critical section
* Run critical section

* Unlock, let other execution know that | am out!

* unlock ()

32



Mutex Example

Thread 1

Critical Section
lock()

edx = value

eax = counter

eax = edx + eax

counter = eax

unlock()

] Critical Section
wait!

lock()

Run!
edx = value

eax = counter

eax = edx + eax

counter = eax

unlock()
33

Thread 2

Critical Section

lock()

edx = value

eax = counter
S

eax = edx + eax
counter = eax

unlock()

wait!

Run!



Summary

* Single-threaded CPU performance does not increase linearly anymore
* CPU contains many cores to speed up by concurrent execution

* Process and Thread are two options for exploiting concurrency
* Process: new page directory/table; do not share memory; isolated
* Thread: shares CR3 (page directory/table); shared memory; not isolated

* Data race could happen if two or more threads access same memory
* Mutex is one way of avoiding this..
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