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Odds and Ends

• Lab 4 posted

• Lab 2 grades posted

• Lab 3 due Monday (5/20) midnight
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Quiz 2
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Process/Thread/Synchronization

• We will learn:

• Why concurrency is useful?

• Differences between Process and Thread

• Data racing issue

• Synchronization (Mutual Exclusion)
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Single-threaded CPU Performance

• # of transistors
• Increasing linearly

• Performance
•  Not increasing linearly…
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CPU Speed Capped by Frequency/Power

• How to get a better performance?
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CPU Speed Capped by Frequency/Power

• How to get a better performance?
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CPU Speed Capped by Frequency/Power

• How to get a better performance?
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Motivation for Concurrency
• Trend in CPU

• Same clock speed, more CPU cores

• Increase System Performance
• Run many jobs at the same time to fully utilize 

multiple cores

• How to increase application performance?
• Run multiple functions as separate jobs at the 

same time!
• Processes, Threads, etc…
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Options for Concurrency

• Process
• Run program as a separate instance

• Thread
• Run program as a same instance
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Process

• Each execution runs in an isolated 
environment

• Does not share memory space
• Each has own page table

• Requires Inter-Process 
Communication for data sharing
• File(), Pipe(), socket(), shared 

memory, etc..
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Process (Environment in JOS)
Kernel

Others

Free…

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

env_create()

Process creates a new PRIVATE memory space

EMPTY
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Process (Environment in JOS)
Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

fork()

Fork() creates new process by copying memory space
Process creates a new PRIVATE memory space

Parent Child

Not sharing
variables

EMPTY EMPTY
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Process (Pros/Cons)

• Pros
• Do not have to modify program to achieve parallelism

• Just run multiple instances, or fork()!

• Cons
• Use some additional memory to run same programs

• Any write will incur memory duplication even in CoW fork()

• Cannot directly read memory of other processes
• Inter-process Communication (IPC) is available, but slow

• Use
• Suitable for parallel ‘isolated’ execution
• Not suitable for parallel execution on shared data
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Can We Share a Memory Space and Run Jobs 
in Parallel at the Same Time?
• Yes! Thread: here I am!

• What is a thread?
• Process: creates a new PRIVATE memory space and run concurrently

• Thread: creates a SHARED memory space and run concurrently

• SHARE?
• Can access the same memory space, e.g., global variables, etc.
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Thread: How Can We Share Memory Space 
Among Threads?
• Process Creation via Fork()

• Naïve design: copy all physical pages, and create a new page directory/table that has 
the same virtual mapping (to new, corresponding physical pages)

• Copy-on-write: do not copy all physical pages but keep the same mappings by read-
only at the new page directory/table and provide a private copy when write on COW 
page occurs…

• Thread Creation
• Get a new execution environment
• Assign the same page directory/table (e.g., assign the same CR3)
• Create a new stack / storage for register context to store execution context 

separately
• Use less memory than fork()…
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Thread
Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

pthread_create()

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

USTACK 2
Add a new stack!

Adding value..

The same variable..

EMPTY EMPTY

17



Thread (Pros/Cons)

• Pros
• Threads can directly access memory space of other threads

• Sharing data!

• Require less memory than fork()
• A stack and few more..

• Cons
• No isolated execution; the programmer needs to be careful

• Use
• Suitable for parallel execution on shared data

• Not suitable for having a private execution
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Synchronization Issue..

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

pthread_create()

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

USTACK 2 Add a new stack!

Adding value..

The same variable..

EMPTY EMPTY

Why not 2000000?
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Data Race

• A thread’s execution result could be inconsistent if other 
threads intervene its execution… 

• counter += value
• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;
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Thread 1

Data Race Example (No race)

edx = value• counter += value
• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• Assume counter = 0 at start, 
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 1

eax = 2

counter = 2

OK, consistent!
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Thread 1

Data Race Example (Race cond.)

edx = value• counter += value
• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• Assume counter = 0 at start, 
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 0

eax = 1

counter = 1

Overwrite, inconsistent
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Thread 1

Data Race Example (Race cond.)

edx = value• counter += value
• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• Assume counter = 0 at start, 
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 0

eax = 1

counter = 1

This load must run after
Storing of a counter.. 
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Thread 1

Data Race Example (Race cond.)

edx = value• counter += value
• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• Assume counter = 0 at start, 
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 1

eax = 2

counter = 2
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How to Prevent Data Racing?

• Mutual Exclusion / Critical Section
• Combine multiple instructions as a chunk

• Let only one chunk execution runs

• Block other executions

Thread 1
Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

No access to 
counter
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How to Prevent Data Racing?

• Mutual Exclusion / Critical Section
• Combine multiple instructions as a chunk

• Let only one chunk execution runs

• Block other executions

Thread 1

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

No access to 
counter
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Would Mutex Render Threading Useless?
Thread 1

Critical Section

Thread 2

Exclusion

Critical Section

Critical Section

Exclusion

Critical Section

Exclusion

Critical Section

Exclusion

Exclusion

Thread 1

Critical Section

Critical Section

Critical Section

Critical Section

Critical Section
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Use Critical Section Only If Required
Thread 1

Critical Section

Thread 2

Exclusion

Critical Section

Exclusion

Parallel Job

Parallel Job

Parallel Job
Parallel Job

Critical Section

Parallel Job

Parallel Job

Critical Section

Parallel Job

Parallel Job
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Caveat: Apply Mutex only if required

• Mutex can synchronize multiple threads and yield consistent result
• No read before previous thread stores the shared data

• Making the entire program as critical section is meaningless
• Running time will be the same as single-threaded execution

• Apply critical section as short as possible to maximize benefit of 
having concurrency
• Non-critical sections will run concurrently!
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Enabling Mutual Exclusion

• cli, in a single processor computer
• Clear interrupt bit

• CPU will never get interrupt until it runs sti
• Set interrupt bit

• There will be no other execution
• Any problems?

• Multi CPU?

• cli/sti available in Ring 0 

• counter += value
• cli

• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• sti
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Mutex (Mutual Exclusion)

• Lock
• Prevent others enter the critical section

• Unlock
• Release the lock, let others acquire the lock

• counter += value
• lock()

• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• unlock()
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Mutex (Mutual Exclusion)

• Lock
• Prevent others enter the critical section

• How?
•  Check if any other execution in the critical section

•  If it is, wait; busy-waiting with while()

•  If not, acquire the lock!
•  Others cannot get into the critical section

• Run critical section

•  Unlock, let other execution know that I am out!

• counter += value
• lock()

• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• unlock()
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Mutex Example

Thread 1 Thread 2
Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()

wait!

Run!

wait!

Run!
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Summary

• Single-threaded CPU performance does not increase linearly anymore
• CPU contains many cores to speed up by concurrent execution

• Process and Thread are two options for exploiting concurrency
• Process: new page directory/table; do not share memory; isolated

• Thread: shares CR3 (page directory/table); shared memory; not isolated

• Data race could happen if two or more threads access same memory
• Mutex is one way of avoiding this..
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