
CS444/544
Operating Systems II

Lecture 12

Multi-threading and Synchronization

5/15/2024

1

Acknowledgement: Slides drawn heavily from Yeongjin Jiang

Odds and Ends

• Lab 4 posted

• Lab 2 grades posted

• Lab 3 due Monday (5/20) midnight

2

Quiz 2

3

Process/Thread/Synchronization

• We will learn:

• Why concurrency is useful?

• Differences between Process and Thread

• Data racing issue

• Synchronization (Mutual Exclusion)

4

Single-threaded CPU Performance

• # of transistors
• Increasing linearly

• Performance
• Not increasing linearly…

5

CPU Speed Capped by Frequency/Power

• How to get a better performance?

6

CPU Speed Capped by Frequency/Power

• How to get a better performance?

7

CPU Speed Capped by Frequency/Power

• How to get a better performance?

8

Motivation for Concurrency
• Trend in CPU

• Same clock speed, more CPU cores

• Increase System Performance
• Run many jobs at the same time to fully utilize

multiple cores

• How to increase application performance?
• Run multiple functions as separate jobs at the

same time!
• Processes, Threads, etc…

9

Options for Concurrency

• Process
• Run program as a separate instance

• Thread
• Run program as a same instance

10

Process

• Each execution runs in an isolated
environment

• Does not share memory space
• Each has own page table

• Requires Inter-Process
Communication for data sharing
• File(), Pipe(), socket(), shared

memory, etc..

11

Process (Environment in JOS)
Kernel

Others

Free…

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

env_create()

Process creates a new PRIVATE memory space

EMPTY

12

Process (Environment in JOS)
Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

fork()

Fork() creates new process by copying memory space
Process creates a new PRIVATE memory space

Parent Child

Not sharing
variables

EMPTY EMPTY

13

Process (Pros/Cons)

• Pros
• Do not have to modify program to achieve parallelism

• Just run multiple instances, or fork()!

• Cons
• Use some additional memory to run same programs

• Any write will incur memory duplication even in CoW fork()

• Cannot directly read memory of other processes
• Inter-process Communication (IPC) is available, but slow

• Use
• Suitable for parallel ‘isolated’ execution
• Not suitable for parallel execution on shared data

14

Can We Share a Memory Space and Run Jobs
in Parallel at the Same Time?
• Yes! Thread: here I am!

• What is a thread?
• Process: creates a new PRIVATE memory space and run concurrently

• Thread: creates a SHARED memory space and run concurrently

• SHARE?
• Can access the same memory space, e.g., global variables, etc.

15

Thread: How Can We Share Memory Space
Among Threads?
• Process Creation via Fork()

• Naïve design: copy all physical pages, and create a new page directory/table that has
the same virtual mapping (to new, corresponding physical pages)

• Copy-on-write: do not copy all physical pages but keep the same mappings by read-
only at the new page directory/table and provide a private copy when write on COW
page occurs…

• Thread Creation
• Get a new execution environment
• Assign the same page directory/table (e.g., assign the same CR3)
• Create a new stack / storage for register context to store execution context

separately
• Use less memory than fork()…

16

Thread
Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

pthread_create()

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

USTACK 2
Add a new stack!

Adding value..

The same variable..

EMPTY EMPTY

17

Thread (Pros/Cons)

• Pros
• Threads can directly access memory space of other threads

• Sharing data!

• Require less memory than fork()
• A stack and few more..

• Cons
• No isolated execution; the programmer needs to be careful

• Use
• Suitable for parallel execution on shared data

• Not suitable for having a private execution

18

Synchronization Issue..

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

pthread_create()

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

USTACK 2 Add a new stack!

Adding value..

The same variable..

EMPTY EMPTY

Why not 2000000?

19

Data Race

• A thread’s execution result could be inconsistent if other
threads intervene its execution…

• counter += value
• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

20

Thread 1

Data Race Example (No race)

edx = value• counter += value
• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 1

eax = 2

counter = 2

OK, consistent!

21

Thread 1

Data Race Example (Race cond.)

edx = value• counter += value
• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 0

eax = 1

counter = 1

Overwrite, inconsistent

22

Thread 1

Data Race Example (Race cond.)

edx = value• counter += value
• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 0

eax = 1

counter = 1

This load must run after
Storing of a counter..

23

Thread 1

Data Race Example (Race cond.)

edx = value• counter += value
• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 1

eax = 2

counter = 2

24

How to Prevent Data Racing?

• Mutual Exclusion / Critical Section
• Combine multiple instructions as a chunk

• Let only one chunk execution runs

• Block other executions

Thread 1
Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

No access to
counter

25

How to Prevent Data Racing?

• Mutual Exclusion / Critical Section
• Combine multiple instructions as a chunk

• Let only one chunk execution runs

• Block other executions

Thread 1

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

No access to
counter

26

Would Mutex Render Threading Useless?
Thread 1

Critical Section

Thread 2

Exclusion

Critical Section

Critical Section

Exclusion

Critical Section

Exclusion

Critical Section

Exclusion

Exclusion

Thread 1

Critical Section

Critical Section

Critical Section

Critical Section

Critical Section

27

Use Critical Section Only If Required
Thread 1

Critical Section

Thread 2

Exclusion

Critical Section

Exclusion

Parallel Job

Parallel Job

Parallel Job
Parallel Job

Critical Section

Parallel Job

Parallel Job

Critical Section

Parallel Job

Parallel Job

28

Caveat: Apply Mutex only if required

• Mutex can synchronize multiple threads and yield consistent result
• No read before previous thread stores the shared data

• Making the entire program as critical section is meaningless
• Running time will be the same as single-threaded execution

• Apply critical section as short as possible to maximize benefit of
having concurrency
• Non-critical sections will run concurrently!

29

Enabling Mutual Exclusion

• cli, in a single processor computer
• Clear interrupt bit

• CPU will never get interrupt until it runs sti
• Set interrupt bit

• There will be no other execution
• Any problems?

• Multi CPU?

• cli/sti available in Ring 0

• counter += value
• cli

• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• sti

30

Mutex (Mutual Exclusion)

• Lock
• Prevent others enter the critical section

• Unlock
• Release the lock, let others acquire the lock

• counter += value
• lock()

• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• unlock()

31

Mutex (Mutual Exclusion)

• Lock
• Prevent others enter the critical section

• How?
• Check if any other execution in the critical section

• If it is, wait; busy-waiting with while()

• If not, acquire the lock!
• Others cannot get into the critical section

• Run critical section

• Unlock, let other execution know that I am out!

• counter += value
• lock()

• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• unlock()

32

Mutex Example

Thread 1 Thread 2
Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()

wait!

Run!

wait!

Run!

33

Summary

• Single-threaded CPU performance does not increase linearly anymore
• CPU contains many cores to speed up by concurrent execution

• Process and Thread are two options for exploiting concurrency
• Process: new page directory/table; do not share memory; isolated

• Thread: shares CR3 (page directory/table); shared memory; not isolated

• Data race could happen if two or more threads access same memory
• Mutex is one way of avoiding this..

34

	Slide 1: CS444/544 Operating Systems II
	Slide 2: Odds and Ends
	Slide 3: Quiz 2
	Slide 4: Process/Thread/Synchronization
	Slide 5: Single-threaded CPU Performance
	Slide 6: CPU Speed Capped by Frequency/Power
	Slide 7: CPU Speed Capped by Frequency/Power
	Slide 8: CPU Speed Capped by Frequency/Power
	Slide 9: Motivation for Concurrency
	Slide 10: Options for Concurrency
	Slide 11: Process
	Slide 12: Process (Environment in JOS)
	Slide 13: Process (Environment in JOS)
	Slide 14: Process (Pros/Cons)
	Slide 15: Can We Share a Memory Space and Run Jobs in Parallel at the Same Time?
	Slide 16: Thread: How Can We Share Memory Space Among Threads?
	Slide 17: Thread
	Slide 18: Thread (Pros/Cons)
	Slide 19: Synchronization Issue..
	Slide 20: Data Race
	Slide 21: Data Race Example (No race)
	Slide 22: Data Race Example (Race cond.)
	Slide 23: Data Race Example (Race cond.)
	Slide 24: Data Race Example (Race cond.)
	Slide 25: How to Prevent Data Racing?
	Slide 26: How to Prevent Data Racing?
	Slide 27: Would Mutex Render Threading Useless?
	Slide 28: Use Critical Section Only If Required
	Slide 29: Caveat: Apply Mutex only if required
	Slide 30: Enabling Mutual Exclusion
	Slide 31: Mutex (Mutual Exclusion)
	Slide 32: Mutex (Mutual Exclusion)
	Slide 33: Mutex Example
	Slide 34: Summary

