
CS444/544
Operating Systems II

Lecture 14

Lock and Synchronization

5/20/2024

1

Acknowledgement: Slides drawn heavily from Yeongjin Jiang

Odds and Ends

• Lab 3 due today’s (5/20) midnight

2

Process (Environment in JOS)
Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

fork()

Fork() creates new process by copying memory space
Process creates a new PRIVATE memory space

Parent Child

Not sharing
variables

EMPTY EMPTY

3

Thread
Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

pthread_create()

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

USTACK 2
Add a new stack!

Adding value..

The same variable..

EMPTY EMPTY

4

Concurrency Issue..
Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

pthread_create()

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

USTACK 2 Add a new stack!

Adding value..

The same variable..

EMPTY EMPTY

Why not 2000000?

5

Thread 1

Data Race Example (Race cond.)

edx = value• counter += value
• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 0

eax = 1

counter = 1

Overwrite, inconsistent

6

How to Prevent Data Racing?

• Mutual Exclusion / Critical Section
• Combine multiple instructions as a chunk

• Let only one chunk execution runs

• Block other executions

Thread 1

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

No access to
counter

7

Caveat: Apply Mutex only if required

• Mutex can synchronize multiple threads and yield consistent result
• No read before previous thread stores the shared data

• Making the entire program as critical section is meaningless
• Running time will be the same as single-threaded execution

• Apply critical section as short as possible to maximize benefit of
having concurrency
• Non-critical sections will run concurrently!

8

Enabling Mutual Exclusion

• cli, in a single processor computer
• Clear interrupt bit

• CPU will never get interrupt until it runs sti
• Set interrupt bit

• There will be no other execution
• Any problems?

• Multi CPU?

• cli/sti available in Ring 0

• counter += value
• cli

• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• sti

9

Mutex (Mutual Exclusion)

• Lock
• Prevent others enter the critical section

• Unlock
• Release the lock, let others acquire the lock

• counter += value
• lock()

• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• unlock()

10

Mutex (Mutual Exclusion)

• Lock
• Prevent others enter the critical section

• How?
• Check if any other execution in the critical section

• If it is, wait; busy-waiting with while()

• If not, acquire the lock!
• Others cannot get into the critical section

• Run critical section

• Unlock, let other execution know that I am out!

• counter += value
• lock()

• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• unlock()

11

Mutex Example

Thread 1 Thread 2
Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()

wait!

Run!

wait!

Run!

12

Mutex Example

Thread 1 Thread 2
Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()
13

How Can We Create
Lock/Unlock for Mutex? -- Spinlock
• Only one can run in critical section

• Others must wait!
• Until nobody runs in critical section

• How can we create such
• Lock() / Unlock() ?

Thread 1

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()

Thread 2

Critical Section

lock()

Thread 3

Critical Section

lock()

14

How Can We Create
Lock/Unlock for Mutex? -- Spinlock
• Spinlock

• Run a loop to check if critical section is empty
• Set a lock variable, e.g., lock
• Lock semantic

• Nobody runs critical section if *lock == 0, so one can run the section
• At the start of the section, set *lock = 1

• Somebody runs in critical section if *lock == 1, so one must wait

• lock(lock)
• Wait until lock becomes 0, e.g., while(*lock == 1);

• Then, if *lock == 0, break the loop, meaning nobody is running in the critical section!
• set *lock = 1

• unlock(lock)
• Set *lock = 0

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

while(*lock ==1);

*lock = 0

*lock = 1
Lock

Unlock

15

*lock == 0

*lock == 1

Spinlock

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

while(*lock ==1);

*lock = 0

*lock = 1
Lock

Unlock

Critical Section

while(*lock ==1);

Lock

Critical Section

while(*lock ==1)
Lock

*lock = 1

edx = value

eax = counter

eax = edx + eax

counter = eax

while(*lock ==1);

16

Spinlock Examples
• wget https://classes.engr.oregonstate.edu/eecs/spring2024/cs444-

001/lock-example-master.zip

• unzip lock-example-master.zip

• Run 30 threads, each count upto 10000

• Build code
• $ make

17

https://classes.engr.oregonstate.edu/eecs/spring2024/cs444-001/lock-example-master.zip
https://classes.engr.oregonstate.edu/eecs/spring2024/cs444-001/lock-example-master.zip

Lock Example

• List of example
• $./lock no # using no lock at all

• $./lock bad # using a bad lock implementation

• $./lock xchg # using xchg lock

• $./lock cmpxchg # using lock cmpxchg

• $./lock tts # using soft test-and-test & set with xchg

• $./lock backoff # using exponential backoff cmpxchg

• $./lock mutex # using pthread mutex

18

Spinlock Examples
• Run code

• $./lock xchg # shows the result of using xchg lock

• $./perf-lock.sh xchg # shows the result of using xchg lock, with cache-miss

19

How lock-example runs?

Main thread

Child thread Child thread Child thread Child thread Child thread

………..

30 threads

uint32_t count 0

pthread_create()

20

How lock-example runs?

Main thread

Child thread Child thread Child thread Child thread Child thread

………..

30 threads

uint32_t count 0

pthread_create()

Each thread will increase count by 1 for 10,000 times

+1

21

How lock-example runs?

Main thread

Child thread Child thread Child thread Child thread Child thread

………..

30 threads

uint32_t count 1

pthread_create()

Each thread will increase count by 1 for 10,000 times

+1

+1

22

How lock-example runs?

Main thread

Child thread Child thread Child thread Child thread Child thread

………..

30 threads

uint32_t count 2

pthread_create()

Each thread will increase count by 1 for 10,000 times

+1

+1

+1

23

How lock-example runs?

Main thread

Child thread Child thread Child thread Child thread Child thread

………..

30 threads

uint32_t count 3

pthread_create()

Each thread will increase count by 1 for 10,000 times

+1

+1

+1

24

lock.c

• Multi-threaded Program
• 30 threads

• Each count 10,000

• Correct result = 300,000
Run 30 threads and
Wait with join()

Each thread
Count 10,000

Race condition may happen

25

1st Candidate: bad_lock

• What will happen if we implement lock
• As bad_lock / bad_unlock?

• bad_lock
• Wait until lock becomes 0 (loops if 1)
• And then, set lock as 1

• Because it was 0, we can set it as 1

• Others must wait!

• bad_unlock
• Just set *lock as 0

Critical
Section

Can pass this if lock=0
Sets lock=1 to block others

Sets lock=0 to release

26

1st Candidate: bad_lock Result

•Inconsistent!

WHY?

27

Race Condition in bad_lock

• There is a room for race condition!

Race condition may happen

LOAD

STORE

Load value 0 from lock
Compare that to 1
Break the loop
Store 1 to lock

Load value 0 from lock
Compare that to 1
Break the loop
Store 1 to lock

Both threads may enter the critical section!28

How Can We Avoid Race Condition on
Loading/Updating a Value?
• while (*lock == 1); *lock = 1; was a bad one

• If we run multiple instructions for
• Loading a value

• Storing a value

• Then we must face race condition…

Race condition may happen

LOAD

STORE

29

Atomic Test-and-Set

• We need a way to test
• if lock == 0

• And we would like to set
• lock = 1

• And do this atomically

• Hardware support is required
• xchg in x86 does this

• An atomic test-and-set operation

Not like these four instructions…

30

xchg: Atomic Value Exchange in x86

• xchg [memory], %reg
• Exchange the content in [memory] with the value in %reg atomically

• E.g.,
• mov $1, %eax
• xchg $lock, %eax

• This will set %eax as the value in lock
• %eax will be 0 if lock==0, will be 1 if lock==1

• At the same time, this will set lock = 1 (the value was in %eax)

• CPU applies ‘lock’ at hardware level (cache/memory) to do this
• Hardware guarantees no data race when running xchg

Swap lock and eax atomically

31

xchg: Atomic Value Exchange in x86

• E.g.,
• mov $1, %eax
• xchg $lock, %eax

• This will set %eax to the value in lock
• %eax will be 0 if lock==0, will be 1 if lock==1

• How can we determine if a thread acquired the lock?
• if eax == 0

• This means the lock was 0, and after running xchg, lock will be 1 (eax was 1)
• We acquired the lock!!! (lock was 0 and now the lock is 1)

• if eax == 1
• This means the lock was 1, and after running xchg, lock will be 1
• We did not acquire the lock (it was 1)
• lock == 1 means some other thread acquired this…

Swap lock and eax atomically

32

2nd Candidate: xchg_lock

• xchg_lock
• Use atomic ‘xchg’ instruction to
• Load and store values atomically
• Set value to 1, and compare ret

• If 0, then you can acquire the lock
• If 1, lock as 1, you must wait

• xchg_unlock
• Use atomic ‘xchg’
• Set value to 0

• Do not need to check
• You are the only thread that runs in the
• Critical section..

Critical
Section

33

2nd Candidate: xchg_lock

• xchg_lock()/xchg_unlock()

34

34

1. Put 1 to edx

2. exchange

if eax == 1, lock is held by others, loop to +8
if eax == 0, lock acquired, return!

2nd Candidate: xchg_lock Result

• Consistent!

• (Run this code yourself!)

35

xchg Works well. Any Problem?

• Atomic xchg instruction load/store data at the same time
• There is no aperture for race condition

• But it could cause cache contention
• Many threads updates the same ‘lock’ variable

• CPUs cache data (thus cache ‘lock’), and we have multiple CPUs

• Update invalidates cache…

36

Cache Coherence

• xchg will always update the value
• If lock == 0

• lock = 1
• eax = 0

• If lock == 1
• lock = 1
• eax = 1

• We use while() to check the value in lock
• Will be cached into L1 cache of the CPU

• After updating a value in cache
• We need to invalidate the cache in other CPUs…

Swap with eax == 1, update lock to 1

Swap with eax == 1, update lock to 1

37

Memory

Cache Coherence and Write
CPU 1

L1 Cache
Lock : 1

Lock: 0

CPU 2

L1 Cache
Lock : 1

Acquire Lock
xchg(lock, 1)

Lock: 1

Spinlock
Waiting..
xchg(lock, 1)

38

L1 Cache
Lock : 1

Memory

Cache Coherence and Write
CPU 1

L1 Cache
Lock : 1

Lock: 1

CPU 2

L1 Cache
Lock : 1

Spinlock
Waiting..
xchg(lock, 1)

Release Lock
xchg(lock, 0) L1 Cache

Lock : 0

Lock: 0

L1 Cache
Lock : 1 Invalid!

We need to flush the cache block if we update lock..

39

L1 Cache
Lock : 1

Memory

Cache Coherence and Write
CPU 1

L1 Cache
Lock : 1

Lock: 1

CPU 2

L1 Cache
Lock : 1

L1 Cache
Lock : 0

Lock: 0

L1 Cache
Lock : 1

We need to flush the cache block if we update lock..

40

Memory

Cache Coherence and Write
CPU 1

L1 Cache
Lock : 1

Lock: 1

CPU 2

L1 Cache
Lock : 1

Spinlock
Waiting..
xchg(lock, 1)

L1 Cache
Lock : 0

Lock: 0

We need to flush the cache block if we update lock..

41

Memory

Cache Coherence and Write
CPU 1

L1 Cache
Lock : 1

Lock: 1

CPU 2

L1 Cache
Lock : 1

Spinlock
Waiting..
xchg(lock, 1)

L1 Cache
Lock : 0

Lock: 1

We need to flush the cache block if we update lock..

Update to 1

42

Memory

Cache Coherence and Write
CPU 1

L1 Cache
Lock : 1

Lock: 1

CPU 2

L1 Cache
Lock : 1

Spinlock
Waiting..
xchg(lock, 1)

L1 Cache
Lock : 1

Lock: 1

We need to flush the cache block if we update lock..

Update to 1

L1 Cache
Lock : 0 Invalid!

43

Memory

Cache Coherence and Write
CPU 1

L1 Cache
Lock : 1

Lock: 1

CPU 2

L1 Cache
Lock : 1

Spinlock
Waiting..
xchg(lock, 1)

L1 Cache
Lock : 1

Lock: 1

Update to 1

L1 Cache
Lock : 0 Invalid!

While 1 thread is running in the critical section,
29 other threads are running to update lock variable to 1.

Each of that operation invalidates cache blocks in each CPU
Cache access is much faster than accessing DRAM

-> xchg_lock is SLOW
44

Use perf to measure
of L1 Cache Miss
• ./perf-lock.sh xchg

Running on Single CPU, so no cache coherence invalidate
120,484 L1 cache miss

Running on 30 CPUs, MANY cache coherence invalidate
16,512,510 L1 cache miss

~150x more cache misses!

45

Test-and-Set (xchg)

• Pros
• Synchronizes threads well!

• Cons
• SLOW

• Lots of cache miss

46

Updating Lock if Lock == 1 is
Not Required
• Updating the same value causes unnecessary cache invalidation

• Avoid this, but how?

• New method: Test and test-and-set
• Check the value first (if lock == 0) TEST

• If it is,
• Do test-and-set

• Otherwise (if lock == 1),
• Do nothing

• DO NOT UPDATE lock if lock == 1 (No cache invalidate)

47

Test and Test-and-set in x86:
lock cmpxchg

• cmpxchg [update-value], [memory]
• Compare the value in[memory] with %eax
• If matched, exchange value in [memory] with [update-value]
• Otherwise, do not perform exchange

• xchg(lock, 1)
• Lock = 1
• Returns old value of the lock

• cmpxchg(lock, 0, 1)
• Arguments: Lock, test value, update value
• Returns old value of lock

Test

Test-and-set

48

CAVEAT

• xchg is an atomic operation in x86

• cmpxchg is not an atomic operation in x86
• Must be used with lock prefix to guarantee atomicity

• lock cmpxchg

49

3rd Candidate: cmpxchg_lock

• Cmpxchg_lock
• Use cmpxchg to set lock = 1

• Do not update if lock == 1

• Only write 1 to lock if lock == 0

• Xchg_unlock
• Use xchg_unlock to set lock = 0

• Because we have 1 writer and

• This always succeeds…

Critical
Section

50

3rd Candidate: cmpxchg_lock Result

• Consistent!

But showing much more cache misses than xchg.. Why????
it does not update if lock ==1…

51

Intel CPU is TOO COMPLEX

Cmpxchg designed to be Test and Test & Set instruction
However, Intel CPU gets too complex, so they decided to always update the value regardless the result of comparison

LAME! Let’s Implement Software
Test and Test & Set

52

4th Candidate: Test and Test & Set

• tts_xchg_lock

• Algorithm
• Wait until lock becomes 0
• After lock == 0

• xchg (lock, 1)
• This only updates lock = 1 if lock was 0

• Why xchg, why not *lock = 1 directly?
• while and xchg are not atomic
• Load/Store must happen at

• The same time!

Critical
Section

53

4th Candidate TTS Result

• Consistent!

• A little less cache misses but

• Faster (~500ms vs. 900 ~ 1200 ms)

54

Still Slow and Many Cache Misses..

• Can we do better? Why we still have too many misses?
• A thread acquires the lock (update 0 -> 1)

• Invalidate caches in 29 other cores

• A thread releases the lock (update 1 -> 0)
• Invalidate caches in 29 other cores

• 29 other cores are all reading the variable lock
• Immediately after invalidate, it loads data to cache

• Then invalidated again by either lock/release…

• This happens in every 3~4 cycles…

55

5th Candidate: Backoff Lock

• Too many contention on reading lock while only 1 can run critical sec.
• All other 29 cores running while (*lock == 1);
• This is the slow down factor

• Idea: can we slow down that check?
• Let’s set a wait time if CPU checked the lock value as 1

• Something like, exponential backoff
• After checking lock == 1,

• Wait 1 cycle
• After checking lock == 1 again,

• Wait 2 cycles
• Wait 4 cycles
• Wait 8 cycles
• …

56

5th Candidate: Backoff Lock

• backoff_cmpxchg_lock(lock)

• Try cmpxchg
• If succeeded, acquire the lock.

• If failed
• Wait 1 cycle (pause) for 1st trial

• Wait 2 cycles for 2nd trial

• Wait 4 cycles for 3rd trial

• …

• Wait 65536 cycles for 17th trial..

• Wait 65536 cycles for 18th trial..

• https://en.wikipedia.org/wiki/Exponential_backoff

57

https://en.wikipedia.org/wiki/Exponential_backoff

5th Candidate: Backoff Result

• Consistent!

• Much lower cache miss

• Faster! (~200ms!)

58

Even Faster Than pthread_mutex

59

Summary

• Mutex is implemented with Spinlock
• Waits until lock == 0 with a while loop (that’s why it’s called spin)

• Naïve code implementation never works
• Load/Store must be atomic

• xchg is a “test and set” atomic instruction
• Consistent, however, many cache misses, slow! (950ms)

• Lock cmpxchg is a ”test and test&set” atomic instruction
• But Intel implemented this as xchg… slow! (1150ms)

• We can implement test-and-test-and-set (tts) with while + xchg
• Faster! (500ms)

• We can also implement exponential backoff to reduce contention
• Much faster! (200ms)

60

61

	Slide 1: CS444/544 Operating Systems II
	Slide 2: Odds and Ends
	Slide 3: Process (Environment in JOS)
	Slide 4: Thread
	Slide 5: Concurrency Issue..
	Slide 6: Data Race Example (Race cond.)
	Slide 7: How to Prevent Data Racing?
	Slide 8: Caveat: Apply Mutex only if required
	Slide 9: Enabling Mutual Exclusion
	Slide 10: Mutex (Mutual Exclusion)
	Slide 11: Mutex (Mutual Exclusion)
	Slide 12: Mutex Example
	Slide 13: Mutex Example
	Slide 14: How Can We Create Lock/Unlock for Mutex? -- Spinlock
	Slide 15: How Can We Create Lock/Unlock for Mutex? -- Spinlock
	Slide 16: Spinlock
	Slide 17: Spinlock Examples
	Slide 18: Lock Example
	Slide 19: Spinlock Examples
	Slide 20: How lock-example runs?
	Slide 21: How lock-example runs?
	Slide 22: How lock-example runs?
	Slide 23: How lock-example runs?
	Slide 24: How lock-example runs?
	Slide 25: lock.c
	Slide 26: 1st Candidate: bad_lock
	Slide 27: 1st Candidate: bad_lock Result
	Slide 28: Race Condition in bad_lock
	Slide 29: How Can We Avoid Race Condition on Loading/Updating a Value?
	Slide 30: Atomic Test-and-Set
	Slide 31: xchg: Atomic Value Exchange in x86
	Slide 32: xchg: Atomic Value Exchange in x86
	Slide 33: 2nd Candidate: xchg_lock
	Slide 34: 2nd Candidate: xchg_lock
	Slide 35: 2nd Candidate: xchg_lock Result
	Slide 36: xchg Works well. Any Problem?
	Slide 37: Cache Coherence
	Slide 38: Cache Coherence and Write
	Slide 39: Cache Coherence and Write
	Slide 40: Cache Coherence and Write
	Slide 41: Cache Coherence and Write
	Slide 42: Cache Coherence and Write
	Slide 43: Cache Coherence and Write
	Slide 44: Cache Coherence and Write
	Slide 45: Use perf to measure # of L1 Cache Miss
	Slide 46: Test-and-Set (xchg)
	Slide 47: Updating Lock if Lock == 1 is Not Required
	Slide 48: Test and Test-and-set in x86: lock cmpxchg
	Slide 49: CAVEAT
	Slide 50: 3rd Candidate: cmpxchg_lock
	Slide 51: 3rd Candidate: cmpxchg_lock Result
	Slide 52: Intel CPU is TOO COMPLEX
	Slide 53: 4th Candidate: Test and Test & Set
	Slide 54: 4th Candidate TTS Result
	Slide 55: Still Slow and Many Cache Misses..
	Slide 56: 5th Candidate: Backoff Lock
	Slide 57: 5th Candidate: Backoff Lock
	Slide 58: 5th Candidate: Backoff Result
	Slide 59: Even Faster Than pthread_mutex
	Slide 60: Summary
	Slide 61

