CS444/544
Operating Systems ||

Lecture 14

Lock and Synchronization
5/20/2024

Acknowledgement: Slides drawn heavily from Yeongjin Jiang

| Oregon State
&

el

Odds and Ends

 Lab 3 due today’s (5/20) midnight

Parent Child
Process (Environment in JOS)

Kernel Kernel Fork() creates new process by copying memory space
Process creates a new PRIVATE memory space

#include <stdio.h>
#include <unistd.h>

int counter;
volatile int value = 1;

UXSTACK UXSTACK

EMPTY

USTACK counter += value;

EMPTY y Parent: 1000000
int main() { Child: 1000000
Free... pid_t pid = fork();

countup();
printf("%s: ", pid ? "Parent" : " Child", counter);

EMPTY

USTACK

EMPTY

void countup() {
for(int 1=0; 1<1000000; ++i) {

Free...

Not sharing
variables

Global < > Global
int counter: int counter;

Thread

Kernel

UXSTACK

EMPTY

USTACK

EMPTY

Free...

Global

pthread_create()

The same variable..

#include <stdio.h>
#include <unistd.h>
#include <pthread.h>

int counter;
volatile int value = 1;
void * countup(void *arg) {
for(int 1=0; 1<1000000; ++1) {
counter += value;
}

printf("%s: %d\n", arg ? "Parent" : " Child", counter)

}

int main() {
pthread_t thread;
pthread_create(&thr2ad, NULL, countup, NULL);
countup((void*) 1)j
pthread_join(thread, NULL);

“——— Add a new stacl¢!

Adding value..

Heap
Global

int counter:

int counter:

I
I
I
I
I
|
I
I
L
I
1
L
I
I
L

1
1
Program 1.

B Child: 1092487
#include <pthread.h> Parent: 1221966

e o Child: 975822
Concurrency Issue.. EESSEEEEE

void * countup(void *arg) {
for(int 1=0; 1<1000000; ++1) {
counter += value;
}

printf("%s: %d\n", arg ? "Parent" : " Child", counter)

I
I
Kernel I Kernel
I
I

}

int main() {
pthread_t thread;
pthread_create(&thr2ad, NULL, countup, NULL);

UXSTACK

EMPTY countup((void*) 1)j
USTACK pthread_join(thread, NULL);
EMPTY pthread_create()
T Add a new stacld

Free... | Free. :

|

: : Adding value..

" |

i |

I Heap :

. L
Global The same variable.. s Clobal i
int counter: L__int counter;

|

|

L

1

1

]
Program £

Data Race Example (Race cond.)

e counter += value
* edx = value;
°* eax counter;
* eax = edx + eax;

* counter = eax;

e Assume counter = 0 at start,
and value = 1;

Thread 1

edx = value
]

eax = counter

|
eax = edx + eax

counter = eax

edx = 1
eax = 0
eax = 1
‘ edx =
eax =

eax =

counter = 1
Overwrite, inconsistent

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

How to Prevent Data Racing?

* Mutual Exclusion / Critical Section
 Combine multiple instructions as a chunk
* Let only one chunk execution runs

* Block other executions

Thread 1

Thread 2

Critical Section

edx = value
]

eax = counter
|

eax = edx + eax
]

counter = eax

Critical Section
edx = value

eax = counter
eax = edx + eax

counter = eax

Caveat: Apply Mutex only if required

* Mutex can synchronize multiple threads and yield consistent result
* No read before previous thread stores the shared data

* Making the entire program as critical section is meaningless
* Running time will be the same as single-threaded execution

* Apply critical section as short as possible to maximize benefit of
having concurrency
* Non-critical sections will run concurrently!

Enabling Mutual Exclusion

e cli, in asingle processor computer * counter += value

e Clear interrupt bit *ell
: , o , * edx = value;
* CPU will never get interrupt until it runs sti 3
. . * eax = counter;
* Set interrupt bit . cax = edx + eax:
* counter = eax;
* sti

* There will be no other execution

* Any problems?
* Multi CPU?
e cli/sti availablein Ring 0

Mutex (Mutual Exclusion)

e Lock * counter += value
* Prevent others enter the critical section * lock()
Unlock * edx = value;
o
nioc . * ecaxX = counter;
* Release the lock, let others acquire the lock e cax = edx 4+ eax:
* counter = eax;

unlock ()

10

Mutex (Mutual Exclusion)

e Lock * counter += value
* Prevent others enter the critical section * lock()
* edx = value;
¥ , * ecaxX = counter;
[)
OW: _ o N _ * cax = edx + eax;
* Check if any other execution in the critical section e counter = eax:

e |[fitis, wait; busy-waiting with while()
* |f not, acquire the lock!

e Others cannot get into the critical section
* Run critical section

* Unlock, let other execution know that | am out!

* unlock ()

11

Mutex Example

Thread 1

Critical Section
lock()

edx = value

eax = counter

eax = edx + eax

counter = eax

unlock()

] Critical Section
wait!

lock()

Run!
edx = value

eax = counter

eax = edx + eax

counter = eax

unlock()
12

Thread 2

Critical Section

lock()

edx = value

eax = counter
S

eax = edx + eax
counter = eax

unlock()

wait!

Run!

Mutex Example

Thread 1

Critical Section
lock()

edx = value

eax = counter

eax = edx + eax

counter = eax

unlock()

Thread 2

Critical Section

lock()

edx = value
eax = counter

eax = edx + eax

counter = eax

unlock()
13

Critical Section

lock()

edx = value

eax = counter
S

eax = edx + eax
counter = eax

unlock()

How Can We Create

Lock/Unlock for Mutex? -- Spinlock

* Only one can run in critical section

e Others must wait!
* Until nobody runs in critical section

e How can we create such
e Lock() / Unlock() ?

14

Thread 1

Thread 2

Critical Section
lock()

edx = value

eax = counter

eax = edx + eax

counter = eax

unlock()

Critical Section

Critical Section

How Can We Create
Lock/Unlock for Mutex? -- Spinlock

void
* Spinlock bad_lock(volatile uint32_t *Llock) {
* Run aloop to check if critical section is empty while (*lock == 1);
* Set a lock variable, e.g., 1ock *lock =1;
* Lock semantic

* Nobody runs critical section if *1ock == 0, so one can run the section
* At the start of the section, set *1ock =1
* Somebody runs in critical section if *1ock == 1, so one must wait

Critical Section

while (*lock ==1) ;
Lock

* lock(lock)
* Wait until lock becomes 0, e.g., while (*1lock == 1) ; edx = value
* Then, if *lock == 0, break the loop, meaning nobody is running in the critical section! RS EEesraa
e set*lock=1
* unlock(lock)
e Set *lock=0

eax = edx + eax

counter = eax

* =
*|lock == Unlock lock

15

*lock ==

Spinlock

Critical Section Critical Section
while (*lock ==1) ; while (*lock ==1);
Lock Lock Lock

*lock =1

edx = value

eax = counter

eax = edx + eax

counter = eax

Unlock *lock = 0

edx = value

eax = counter

eax = edx + eax

counter = eax

Spinlock Examples

e wget https://classes.engr.oregonstate.edu/eecs/spring2024/cs444-
001/lock-example-master.zip

* unzip lock-example-master.zip
* Run 30 threads, each count upto 10000

e Build code
* S make

0s2 ~/csd444/s21/lock-example-master 146% make

gcc -0 lock lock.c -std=c99 -g -Wno-implicit-function-declaration -02 -1pthread

17

https://classes.engr.oregonstate.edu/eecs/spring2024/cs444-001/lock-example-master.zip
https://classes.engr.oregonstate.edu/eecs/spring2024/cs444-001/lock-example-master.zip

Lock Example

* List of example

e S./lock no # using no lock at all

* S ./lock bad # using a bad lock implementation

« S./lock xchg # using xchg lock

* S./lock cmpxchg # using lock cmpxchg

* S./lock tts # using soft test-and-test & set with xchg
S ./lock backoff # using exponential backoff cmpxchg

* S ./lock mutex # using pthread mutex

18

Spinlock Examples

* Run code
* S./lock xchg # shows the result of using xchg lock
» S ./perf-lock.sh xchg # shows the result of using xchg lock, with cache-miss

0s2 ~/csd444/s21/1lock-example-master 147% ./lock xchg
Counting 10000 with 30 threads using XCHG_ LOCK...
Count: 300000, elapsed Time: 993,120 ms

0s2 ~/csd444/s21/lock-example-master 148% ./perf-lock.sh xchg
Counting 10000 with 30 threads using XCHG_LOCK...
Count: 300000, elapsed Time: 877.739 ms

Performance counter stats for './lock xchg':

15,605,097 L1-dcache-load-misses:u
0.881950454 seconds time elapsed

20.486671000 seconds user
0.090785000 seconds sys

How lock-example runs?

uint32 t count O

% Main thread
pthread_create()

% % % % %

Child thread Child thread Child thread Child thread Child thread

30 threads

20

How lock-example runs?

uint32 t count O

% Main thread
thread_create()

% % % %

Child thread Child thread Child thread Child thread Child thread

30 threads

Each thread will increase count by 1 for10,000 times

How lock-example runs?

uint32 tcount 1

E§

Child thread Child thread Child thread Child thread

% Main thread

%

Child thread

30 threads

Each thread will increase count by 1 for210,000 times

How lock-example runs?

uint32 t count 2 +1

Sthread_create +
+1

Child thread Child thread Child thread Child thread Child thread

Main thread

30 threads

Each thread will increase count by 1 for210,000 times

How lock-example runs?

uint32 t count 3 +1

Sthread_create +
+1

Child thread Child thread Child thread Child thread Child thread

Main thread

30 threads

Each thread will increase count by 1 for410,000 times

052 ~/cs444/s521/1lock-example-master 153% 1ls -1

otal 264

- rwXrwx- - -, songyip upg56220 27360 May 20 11:18 lock

-rw-rw----, songyip upg56220 5617 May 21 2020 lock.c
|OCk.C -rwW-rw----, songyip upg56220 187 May 21 2020 Makefile

-rwxr-xr-x. 1 songyip upg56220 55 May 21 2020 perf-lock.sh

4define N_THREADS (30)
* Multi-threaded Program fdefine N_COUNT (10000)

o pthread_t threads[N_THREADS];
30 threads uint64_t time_start, time_end;

e Each count 10,000 for (int i=0; i<N THREADS; ++i) {
pthread_create(&threads[i], NULL, thread_func, NULL);
e Correct result = 300,000

Counting 10000 with 30 threads using NO LOCK...
Count: 36713, elapsed Time: 38.272 ms

for (int i=0; i<N_THREADS; ++i) { Run 30 threads and

, Prhread_join(threadslil, NULL): \yait with join()

volatile uint32_t count;
void *
count no lock(void *args) {
for (int 1=0; 1 < N_COUNT; ++1) {
sched yield();
count +=1;

0x201721(%rip),%eax # 0x60206c <count>
$0x1,%eax
$0x1, %ebx
%eax,0x201715(%rip) # 0x60206c <count>

Race condition may happen

15t Candidate: bad lock

count_bad lock(void *args) {

. : : : for (int i=0; i < N_COUNT; ++i) {
What will happen if we implement lock pad Lock (Slock)
e As bad lock / bad unlock? sched _yield();
count += 1;
bad unlock(&lock);
* bad lock
* Wait until lock becomes 0 (loops if 1)
* And then, set lock as 1 void
* Becauseitwas 0, we cansetitas 1 bad lock(volatile uint32_t *lock) {
e Others must wait! Can pass this if lock=0 phile (“lock == 1);
Sets lock=1 to block others) Lock = 1;
* bad_unlock .
— . void
* Just set *lock as O bad_unlock(volatile uint32_t *Llock) {

Sets lock=0 to release *Llock = 0;

}

15t Candidate: bad lock Result

°lnconsistent!

Counting 10000 with 30 threads using BAD LOCK...

Count: 48297, elapsed Time: 46.098 ms

WHY?

Race Condition in bad lock

* There is a room for race condition!

LOAD Rl %rdi) ,%eax

je 0x400b60 <bad lock>
STORE Hu\'AH $0x1, (%rdi)

threa ol | -[_/J/L‘FE@D(_Z

Load value 0 from lock
Compare thatto 1
Break the loop

Store 1 to lock

Load value 0 from lock
Compare thatto 1
Break the loop

Store 1 to lock

Both threads may enter the critical section!

void
bad lock(volatile uint32_t *lock) {
while (*lock == 1);

*lock = 1;

How Can We Avoid Race Condition on
Loading/Updating a Value?

ewhile (*lock == 1); *lock = 1; wasabadone

LOAD QJulel (%rdi) ,%eax # 0x60206¢c <count>
cmp $0x1, seax Race condition may happen
je 0x400b60 <bad lock>

el movl $0x1, (%rdi) # 0x60206¢c <count>

* If we run multiple instructions for
* Loading a value
 Storing a value

* Then we must face race condition...

29

Atomic Test—-and-Set

%rdi) ,%eax

$0x1, %eax
* We need a way to test : 0x400b60 <bad_lock>
e if lock == $0x1, (%rdi)
 And we would like to set Not like these four instructions...
e lock=1

* And do this atomically

* Hardware support is required
. Xchg in x86 does this
% ¢ An amelc test-and-set operation

xchg: Atomic Value Exchange in x86

* xchg [memory], %reg
e Exchange the contentin [memory] with the valuein $reg atomically

* mov S1, %eax
* xchg Slock, %eax Swap lock and eax atomically

 This will set 3eax asthevaluein lock
e Scax WillbeOif lock==0, willbel if lock==

e At the same time, this will set 1ock = 1 (the value wasin %eax)

* CPU applies ‘lock’ at hardware level (cache/memory) to do this
* Hardware guarantees no data race when running xchg

31

xchg: Atomic Value Exchange in x86

* mov S1, %eax
* xchg $lock, %eax Swap lock and eax atomically

 This will set 3eax to the valuein lock
e Scax WillbeOif lock==0, willbel if lock==

* How can we determine if a thread acquired the lock?

e ifeax == 0
* This means the 1ock was 0, and after running xchg, Lock will be 1 (eax was 1)
* We acquired the lock!!! (Lock was 0 and now the 1ock is 1)

e ifeax == 1
e This means the 1ock was 1, and after running xchg, lock will be 1
* We did not acquire the lock (it was 1)
e lock == 1 meanssome other thread acquired this...

32

2"d Candidate: xchg lock

volid *

count_xchg lock(void *args) {
. for (int i=0; i < N_COUNT; ++i) {
xchg_lock . N . xchg_lock(&lock) ;
* Use atomic xchg Instruction to sched yield();

* Load and store values atomically count += 1;
xchg_unlock(&lock);

e Set value to 1, and compare ret
* If 0, then you can acquire the lock
e If 1, lock as 1, you must wait

’ xchg_unlock :zﬁg_lock(volatile uint32_t *lock) {
e Use atomic ‘xchg’ while(xchg(lock, 1));
* SetvaluetoO }
* Do not need to check void
* You are the only thread that runs in the xchg_unlock(volatile uint32 t *lock) {

e Critical section.. xchg(lock, 0);

}

2"d Candidate: xchg lock

» xchg lock()/xchg_unlock()

disass xchg_lock
Dump of assembler code for function xchg_ lock:
0x0000000000400b80 <+0>: mov $0x1,%edx
0x0000000000400b85 <+5>: nopl (Ssrax)
0x0000000000400b88 <+8>: mov %edXx,%seax

Ox0000000000400b8a <+10>: xcha %eax, (%srdi)
Ox0000000000400b8c <+12>: test %eax,%seax
0x0000000000400b8e <+14>: ine 0x400b88 <xchg lock+8>
0x0000000000400b90 <+16>: repz retq

void if eax == 1, lock is held by others, loop to +8
xchg lock(volatile uint32_t *lock) { if eax == 0, lock acquired, return!
while(xchg(lock, 1)); ,
} disass xchg_unlock
Dump of assembler code for function xchg_unlock:
Ox0000000000400bad <+0>: Xor %eax,%eax

void 0 eax
xchg_unlock(volatile uint32 t *lock) { 0x0000000000400ba2 <+2>: xchg %eax, (%rdi)

0x0000000000400bad <+4>: retq

xchg(lock, 0);
}

2"d Candidate: xchg lock Result

 Consistent!

0s2 ~/csd444/s21/lock-example-master 158% ./lock xchg

Counting 10000 with 30 threads using XCHG_LOCK...
Count: 300000, elapsed Time: 906.339 ms

* (Run this code yourself!)

35

xchg Works well. Any Problem?

» Atomic xchg instruction load/store data at the same time
* There is no aperture for race condition

e But it could cause cache contention
* Many threads updates the same ‘lock’ variable
* CPUs cache data (thus cache ‘lock’), and we have multiple CPUs
* Update invalidates cache...

36

Cache Coherence

* xchg will always update the value

* |f lock ==
* lock=1 Swap with eax == 1, update lock to 1
* eax=0

* If lock ==

* lock=1 Swap with eax == 1, update lock to 1
e eax=1

* We use while() to check the value in lock
* Will be cached into L1 cache of the CPU

e After updating a value in cache
* We need to invalidate the cache in other CPUs...

37

Cache Coherence and Write

CPU1

Acquire Lock
xchg(lock, 1) L1 Cache
Lock : 1

CPU 2
Spinlock

Waiting.. L1 Cache
xchg(lock, 1) Lock : 1

38

Cache Coherence and Write

CPU1

Release Lock
xchg(lock, 0) L1 Cache
Lock : 1

CPU 2

Spinlock We need to flush the cache block if we update lock..

Waiting.. L1 Cache
xchg(lock, 1) Lock : 1 Invalid!

39

Cache Coherence and Write

CPU1

L1 Cache
Lock: 0O

CPU 2

L1 Cache
Lock : 1

We need to flush the cache block if we update lock..

40

Cache Coherence and Write

CPU1

L1 Cache
Lock: 0O

CPU 2
Spinlock

Waiting.. L1 Cache
xchg(lock, 1) Lock : 1

We need to flush the cache block if we update lock..

41

Cache Coherence and Write

CPU1

L1 Cache

Lock: 0O

Update to 1

CPU 2
Spinlock We need to flush the cache block if we update lock..

Waiting.. L1 Cache
xchg(lock, 1) Lock : 1

42

Cache Coherence and Write

CPU1

L1 Cache

Lock : O Invalid!

Update to 1

CPU 2
Spinlock We need to flush the cache block if we update lock..

Waiting.. L1 Cache
xchg(lock, 1) Lock : 1

43

Cache Coherence and Write

CPU1

L1 Cache

Lock : O Invalid!

Update to 1

CPU 2
Spir.1l.ock While 1 thread is running in the critical section,
Waiting.. L1 Cache 29 other threads are running to update lock variable to 1.
xchg(lock, 1) Lock : 1

Each of that operation invalidates cache blocks in each CPU
Cache access is much faster than accessing DRAM
-> xchg_lock is SLOW

Use perf to measure 4 /30 cores o [Foms
of L1 Cache Miss

e ./perf-lock.sh xchg

0s2 ~/csd444/s21/lock-example-master 161% taskset -c¢ 1 ./perf-lock.sh xchg
ounting 10000 with 30 threads using XCHG_LOCK...
Count: 300000, elapsed Time: 3928.363 ms

B30 s /37 ms “ 7

Performance counter stats for './lock xchg':

120,481 Ll1-dcache-load-misses:u

| ~150x more cache misses!
3.930350597 seconds time elapsed

3.896006000 seconds user . . .
0.023944000 seconds sys Running on 30 CPUs, MANY cache coherence invalidate

: . _ _ 16,512,510 L1 cache miss
Running on Single CPU, so no cache coherence invalidate R A S T T TR S T TG A G

120.484 L1 cache miss Counting 10000 with 30 threads using XCHG_LOCK...
! Count: 300000, elapsed Time: 930.011 ms

Performance counter stats for './lock xchg':

16,512,510 Ll1-dcache-load-misses:u

0.934165522 seconds time elapsed

45 22.914399000 seconds user
0.098768000 seconds sys

Test-and-Set (xchg)

* Pros
. 0s2 ~/csd444/s21/lock-example-master 159% ./perf-lock.sh xchg
* Synchronizes threads well! Counting 10000 with 30 threads using XCHG LOCK...
Count: 300000, elapsed Time: 930.011 ms
Performance counter stats for './lock xchg':
°
(:C)r]s 16,512,510 L1-dcache-load-misses:u
* SLOW

0.934165522 seconds time elapsed

* Lots Of cache miss 22.914399000 seconds user

0.098768000 seconds sys

46

Updating Lock if Lock==1is
Not Required

* Updating the same value causes unnecessary cache invalidation

e Avoid this, but how?

* New method: Test and test-and-set
e Check the value first (if lock ==0) € TEST
e Ifitis,
* Do test-and-set

e Otherwise (if lock == 1),

* Do nothing
DO NOT UPDATE lock if lock == 1 (No cache invalidate)

47

Test and Test-and-set in x86:
lock cmpxchg

* cmpxchg [update-value], [memory]
* Compare the value in [memory] with $eax Test
* If matched, exchange value in [memory] with [update-value] Test-and-set
* Otherwise, do not perform exchange

* xchg(lock, 1)
 Lock=1
e Returns old value of the lock
* cmpxchg(lock, 0, 1)
* Arguments: Lock, test value, update value
e Returns old value of lock

48

CAVEAT

* xchg Isan atomic operation in x86

* cmpxchg is not an atomic operation in x86
* Must be used with lock prefix to guarantee atomicity

* lock cmpxchg

49

3"d Candidate: cmpxchg lock

void *
count_cmpxchg lock(void *args) {
* Cmpxchg_lock for (int i=0; i < N_COUNT; ++i) {
cmpxchg lock(&lock);
* Use cmpxchg to set lock =1 scﬁed ?Eeld(;; |

* Do not update if lock == count += 1;
xchg_unlock(&lock);

* Only write 1 to lock if lock ==

e Xchg _unlock | void
cmpxchg lock(volatile uint32_t *lock) {

* Use xchg_unlock to set lock =0 while (cmpxchg(lock, 0, 1));
e Because we have 1 writer and | }

* This always succeeds... void
xchg _unlock(volatile uint32_t *lock) {
xchg(lock, 0);

}

3"d Candidate: cmpxchg lock Result

e Consistent!
0s2 ~/csd444/s21/lock-example-master 165% ./perf-lock.sh cmpxchg

Counting 10000 with 30 threads using CMPXCHG_LOCK...
Count: 300000, elapsed Time: 1024.987 ms
Performance counter stats for './lock cmpxchg':

18,153,123 Ll-dcache-load-misses:u

1.028728892 seconds time elapsed

26.794265000 seconds user
0.080822000 seconds sys

But showing much more cache misses than xchg.. Why????
it does not update if lock ==1,..

Intel CPU is TOO COMPLEX

This [cmpxchg]instruction can be used with a LOCK prefix to allow the instruction to be executed atomicallyj To simplify

the interface to the processors bus}theldestination operand receives a write cycle without regard to the result of the
he destination operand is written back if the comparison fails; otherwise, the source operand is written

into the destination. (The processor never produces a locked read without also producing a locked write.)

Cmpxchg designed to be Test and Test & Set instruction
However, Intel CPU gets too complex, so they decided to always update the value regardless the result of comparison

LAME! Let’s Implement Software
Test and Test & Set

52

4t Candidate: Test and Test & Set

void *
count_tts xchg lock(void *args) {
e tts xchg lock for (int i=0; i < N_COUNT; ++i) {
: tts_xchg_ lock(&lock);
* Algorithm sched_yield();

 Wait until lock becomes O count += 1;
o After lock == xchg unlock(&lock);

* xchg (lock, 1)
* This only updates lock =1 if lock was O

void
* Why xchg, why not *lock = 1 directly S
. . whlliLe
* while and xchg are not atomic while(*lock == 1):
* Load/Store must happen at if (ﬁchgl((lock. 1) == 0) {
reak;

* The same time!

4t Candidate TTS Result

 Consistent!
0s2 ~/csd444/s21/lock-example-master 166% ./perf-lock.sh tts

Counting 10000 with 30 threads using TTS_LOCK...
Count: 300000, elapsed Time: 473.709 ms
Performance counter stats for './lock tts':

13,661,665 Ll1-dcache-load-misses:u

0.477827903 seconds time elapsed

13,089950000 seconds user
0.106730000 seconds sys

e A little less cache misses but
e Faster (~¥~500ms vs. 900 ~ 1200 ms)

54

Still Slow and Many Cache Misses..

* Can we do better? Why we still have too many misses?

* A thread acquires the lock (update 0 -> 1) S
o i i count_tts xchg lock(void *args) {
Invalidate caches in 29 other cores for (Int 120: i < N COUNT: ++i) {
e Athread releases the lock (update 1 -> 0) tts_xchg_lock(&lock);
sched_yield();

* Invalidate caches in 29 other cores count += 1;
. . xchg _unlock(&lock) ;
e 29 other cores are all reading the variable lock

* Immediately after invalidate, it loads data to cache

* Then invalidated again by either lock/release... [GEK
« This happens in every 3~4 cycles... tts xchg lock(volatile uint32 t *Llock) {
while (1) {

while(*lock == 1);
if (xchg(lock, 1) == 0) {

JELE

5th Candidate: Backoff Lock

* Too many contention on reading lock while only 1 can run critical sec.
* All other 29 cores running while (*lock == 1) ;
e This is the slow down factor

* |dea: can we slow down that check?
e Let’s set a wait time if CPU checked the lock value as 1

* Something like, exponential backoff
» After checking lock == 1,

* Wait 1 cycle void
* After checking lock == 1 again, tts_xchg_lock(volatile uint32_t *lock) {
* Wait 2 cycles while (1) {
* Wait 4 cycles while(*lock == 1);
* Wait 8 cycles if (xchg(lock, 1) == 0) {

. .. JELE

5th Candidate: Backoff Lock

e backoff _cmpxchg lock(lock)

void
* Try cmpxchg backoff cmpxchg lock(volatile uint32_ t *lock) {
: uint32_t backoff = 1;
* |f succeeded, acquire the lock. while(cmpxchg(lock, 0, 1)) {
e If failed ' for (int i=0; ifbackoff; ++1) {
* Wait 1 cycle (pause) for 1% trial } —asm volatile("pause”);
* Wait 2 cycles for 2" trial if (backoff < 0x10000) {

Wait 4 cycles for 3" trial backoff <<= 1;

Wait 65536 cycles for 17t trial..
Wait 65536 cycles for 18t trial..

 https://en.wikipedia.org/wiki/Exponential backoff

https://en.wikipedia.org/wiki/Exponential_backoff

5th Candidate: Backoff Result

e Consistent!

0s2 ~/csd444/s21/lock-example-master 168% ./perf-lock.sh backoff
Counting 10000 with 30 threads using BACKOFF_LOCK...
Count: 300000, elapsed Time: 210.387 ms

Performance counter stats for './lock backoff':

196,227 Ll-dcache-1load-misses:u

0.214007977 seconds time elapsed

4.405105000 seconds user
0.112746000 seconds sys

* Much lower cache miss
 Faster! (~200ms!)

58

Even Faster Than pthread mutex

0s2 ~/csd444/s21/lock-example-master 168% ./perf-lock.sh backoff
Counting 10000 with 30 threads using BACKOFF_LOCK...
Count: 300000, elapsed Time: 210.387 ms
Performance counter stats for './lock backoff':
196,227 Ll-dcache-load-misses:u
0.214007977 seconds time elapsed

4.405105000 seconds user
0.112746000 seconds sys

0s2 ~/csd444/s21/1lock-example-master 170% ./perf-lock.sh mutex
Counting 10000 with 30 threads using MUTEX LOCK...
Count: 300000, elapsed Time: 473.064 ms

Performance counter stats for './lock mutex':
1,656,537 L1-dcache-load-misses:u
0.477209142 seconds time elapsed

0.519430000 seconds user
12.487676000 seconds sys

Summary

* Mutex is implemented with Spinlock
* Waits until lock == 0 with a while loop (that’s why it’s called spin)

* Naive code implementation never works
e Load/Store must be atomic

e xchg is a “test and set” atomic instruction
* Consistent, however, many cache misses, slow! (950ms)

* Lock cmpxchg is a "test and test&set” atomic instruction
e But Intel implemented this as xchg... slow! (1150ms)

* We can implement test-and-test-and-set (tts) with while + xchg
e Faster! (500ms)

* We can also implement exponential backoff to reduce contention
 Much faster! (200ms)

0s2 ~/csd444/s21/lock-example-master 172% ./lock
Counting 10000 with 30 threads
Count: 37484, elapsed Time:

Counting 10000 with 30 threads
Count: 45567, elapsed Time:

Counting 10000
Count:

300000,
Counting 10000
Count: 300000,
Counting 10000
Count: 300000,
Counting 10000
Count: 300000,
Counting 10000
Count: 300000,

with 30
elapsed
with 30
elapsed
with 30
elapsed
with 30
elapsed
with 30
elapsed

threads
Time:
threads
Time:
threads
Time:
IICERE
Time:
threads
Time:

using NO LOCK...
37.261 ms

using BAD LOCK...
43.420 ms

using XCHG LOCK...
908.793 ms

using CMPXCHG LOCK. ..

956.066 ms
using TTS LOCK...
465.198 ms

using BACKOFF LOCK...

142 .791 ms
using MUTEX LOCK...
428.405 ms

	Slide 1: CS444/544 Operating Systems II
	Slide 2: Odds and Ends
	Slide 3: Process (Environment in JOS)
	Slide 4: Thread
	Slide 5: Concurrency Issue..
	Slide 6: Data Race Example (Race cond.)
	Slide 7: How to Prevent Data Racing?
	Slide 8: Caveat: Apply Mutex only if required
	Slide 9: Enabling Mutual Exclusion
	Slide 10: Mutex (Mutual Exclusion)
	Slide 11: Mutex (Mutual Exclusion)
	Slide 12: Mutex Example
	Slide 13: Mutex Example
	Slide 14: How Can We Create Lock/Unlock for Mutex? -- Spinlock
	Slide 15: How Can We Create Lock/Unlock for Mutex? -- Spinlock
	Slide 16: Spinlock
	Slide 17: Spinlock Examples
	Slide 18: Lock Example
	Slide 19: Spinlock Examples
	Slide 20: How lock-example runs?
	Slide 21: How lock-example runs?
	Slide 22: How lock-example runs?
	Slide 23: How lock-example runs?
	Slide 24: How lock-example runs?
	Slide 25: lock.c
	Slide 26: 1st Candidate: bad_lock
	Slide 27: 1st Candidate: bad_lock Result
	Slide 28: Race Condition in bad_lock
	Slide 29: How Can We Avoid Race Condition on Loading/Updating a Value?
	Slide 30: Atomic Test-and-Set
	Slide 31: xchg: Atomic Value Exchange in x86
	Slide 32: xchg: Atomic Value Exchange in x86
	Slide 33: 2nd Candidate: xchg_lock
	Slide 34: 2nd Candidate: xchg_lock
	Slide 35: 2nd Candidate: xchg_lock Result
	Slide 36: xchg Works well. Any Problem?
	Slide 37: Cache Coherence
	Slide 38: Cache Coherence and Write
	Slide 39: Cache Coherence and Write
	Slide 40: Cache Coherence and Write
	Slide 41: Cache Coherence and Write
	Slide 42: Cache Coherence and Write
	Slide 43: Cache Coherence and Write
	Slide 44: Cache Coherence and Write
	Slide 45: Use perf to measure # of L1 Cache Miss
	Slide 46: Test-and-Set (xchg)
	Slide 47: Updating Lock if Lock == 1 is Not Required
	Slide 48: Test and Test-and-set in x86: lock cmpxchg
	Slide 49: CAVEAT
	Slide 50: 3rd Candidate: cmpxchg_lock
	Slide 51: 3rd Candidate: cmpxchg_lock Result
	Slide 52: Intel CPU is TOO COMPLEX
	Slide 53: 4th Candidate: Test and Test & Set
	Slide 54: 4th Candidate TTS Result
	Slide 55: Still Slow and Many Cache Misses..
	Slide 56: 5th Candidate: Backoff Lock
	Slide 57: 5th Candidate: Backoff Lock
	Slide 58: 5th Candidate: Backoff Result
	Slide 59: Even Faster Than pthread_mutex
	Slide 60: Summary
	Slide 61

