
CS444/544
Operating Systems II

Lecture 15

Lock and Synchronization (cont.)

Concurrency Bugs and Deadlock

5/22/2024

1

Acknowledgement: Slides drawn heavily from Yeongjin Jiang



Odds and Ends

• No lecture next Monday (5/27) – Memorial Day

• It is recommended to complete Part A by next lecture 

2



Part-A Result

• You should get this OK before start exercise 8

• FAQ
• What if dumbfork halts?

• Check if your sched_yield()/env_run() is implemented correctly

• curenv must set as ENV_RUNNABLE state if it is scheduled out…

• What if I have a syscall error?
• Check if your implementation returns the return value of the syscall correctly

• Check syscall arguments and orders

• There always be syscalls to SYS_getenvid and SYS_cputs

3



CAUTION:
You Will See LOTS of Page Faults in Part B
• What should I do if I see a page fault?

• Check information related to the fault
• Check tf_eip (the origin of the fault)
• Check fault_va (read cr2, rcr2())

• You can reason a lot from this address, e.g., 0xcafebffe?
• If it is 0, a null pointer dereference, check your impl!!!

• Check error code (user/kernel, read/write, present?)

• Think about why this fault happens???

4



How Can I Get the Code for User Exec?

• Read obj/user/xxxx.asm

• E.g., dumbfork:

• You can match eip and the source code

5



Debugging Tips

• Check your traps. Recommend 
to print out some trap 
information whenever you got 
a trap…

6



Debugging Tips

• Check your traps. Recommend 
to print out some trap 
information whenever you got 
a trap…

7



Thread 1

Recap: Data Race Example

edx = value• counter += value
• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• Assume counter = 0 at start

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 0

eax = 1

counter = 1

8

Counter = 1, not 2!!!



Recap: Mutex

• Lock
• Prevent others enter the critical section

• Unlock
• Release the lock, let others acquire the lock

• counter += value
• lock()

• edx = value;

• eax = counter;

• eax = edx + eax;

• counter = eax;

• unlock()

Thread 1 Thread 2
Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()
9



Spinlock Examples
• unzip lock-example-master.zip

• Run 30 threads, each count upto 10000

• Build code
• $ make

10



Summary

• 5 Lock implementations
• Naïve lock (bad_lock, not working)
• xchg lock (test-and-set, slow)
• cmpxchg lock (a fake test and test-and-set, still slow)
• Software test and hardware test-and-set (fast!)
• Hardware test-and-set with exponential backoff (faster!)

• Performance check
• Total execution time
• L1-dcache-load-misses
• Compare the performance to pthread_mutex

11



lock-example

12

If the lock variable is not 0

Spins * 2 + 10… exp backoff!

Check if the lock variable is 0…



Lock is Slow

• Run While() internally

• Can block other threads

• We need to determine when and where to use lock

Thread 2

Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

lock()

unlock()13



When Do We Need to Use a Lock?

• Write must be finished before the next load

• Many writers and one reader
• Yes… many writers..

• Two writers and two readers
• Yes, two writers…

• One writer and many readers
• Not always if there is only one writer

14

Thread 1 Thread 2

eax = counter

eax = edx + eax

counter = eax

eax = counter

Thread 1 Thread 2

eax = counter

eax = edx + eax

counter = eax

eax = counter



Code

Where Do We Need to Put a Lock?

• What will happen if a critical section is too big?

Thread 1 Thread 2

Update A

Update B

Update C

Update D

CS 1

Update A

Update B

Update C

Update D

CS 2

Update A

Update B

Update C

Update D

Wasting time for waiting for all

Four independent variables
Require a lock on updating these..

15



Code

Small Critical Sections

Thread 1 Thread 2

Update A

Update B

Update C

Update D

CS A2

Update A

CS A1

Update A

CS B1

Update B

CS B2

Update B

CS C2

Update C

CS D2

Update D

CS C1

Update C

CS D1

Update D

Fast, but developer must take care of
splitting critical sections.. 

16



General Practice

• Use lock only if it is required
• Determine the case when you do not need a lock

• Atomic read
• Only one writer

• Use a small critical section
• Critical section prohibits concurrent execution
• Determine where do we share a variable
• Wrap only the code that updates the shared variable

•  Looks simple, but sometimes it’s difficult

17



Concurrency Bugs

• Code does not have a bug when it runs with single thread could have 
a bug when it runs with multiple threads
• Multiple cores, etc.

• What are the types of concurrency bugs?
• Atomicity

• Ordering

• Deadlock

18



Atomicity

Time-of-check-to-time-of-use bug

TOCTTOU

Time of check

Time of use

Write!

Read

19



Atomicity: Use Lock

In critical section, NO UPDATE
Do not have TOCTTOU!

This will also block other threads that run 
line 5 while thread 2 updates thd->proc_info..

20

Time of check

Time of use

Update!



Ordering: Mozilla – Order 1

21



Ordering: Mozilla – Order 2

Not Initialized…

22



How Can We Resolve
the Ordering Issue?
• Use locks and conditional 

variables to force a specific 
ordering…

• pthread_cond_wait(cond, lock)
• Set cond  = 0

• You will release the lock

• Wait until cond == 1

• Acquire the lock again

• pthread_cond_signal(cond)
• cond = 1

Waits
condition..

Sends Signal..

23



Deadlock

• Two or more threads are 
waiting for the other to take 
some actions thus neither 
makes any progress

Lock L1

Lock L2

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

24



S
T

O
P

STOP

S
T

O
P

STOP

A

B

25



S
T

O
P

STOP

S
T

O
P

STOP

A

B

26



S
T

O
P

STOP

S
T

O
P

STOP

A

B

27



S
T

O
P

STOP

S
T

O
P

STOP

A

B

28



S
T

O
P

STOP

S
T

O
P

STOP

A

B

C

D

29



S
T

O
P

STOP

S
T

O
P

STOP

A
B

C
D

who goes?

30



S
T

O
P

STOP

S
T

O
P

STOP

A
B

C
D

Deadlock!

31



Deadlock: Example
Lock L1

Lock L2

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

32



How Can We Resolve
Circular Dependency

33



Circular
Dependency

Lock A

Lock B

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

34



Non-Circular
Dependency

Lock L1

Lock L2

Thread 1

Thread 2

holds

holds
wanted

by

35


	Slide 1: CS444/544 Operating Systems II 
	Slide 2: Odds and Ends
	Slide 3: Part-A Result
	Slide 4: CAUTION: You Will See LOTS of Page Faults in Part B
	Slide 5: How Can I Get the Code for User Exec?
	Slide 6: Debugging Tips
	Slide 7: Debugging Tips
	Slide 8: Recap: Data Race Example
	Slide 9: Recap: Mutex
	Slide 10: Spinlock Examples
	Slide 11: Summary
	Slide 12: lock-example
	Slide 13: Lock is Slow
	Slide 14: When Do We Need to Use a Lock?
	Slide 15: Where Do We Need to Put a Lock?
	Slide 16: Small Critical Sections
	Slide 17: General Practice
	Slide 18: Concurrency Bugs
	Slide 19: Atomicity
	Slide 20: Atomicity: Use Lock
	Slide 21: Ordering: Mozilla – Order 1
	Slide 22: Ordering: Mozilla – Order 2
	Slide 23: How Can We Resolve the Ordering Issue?
	Slide 24: Deadlock
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Deadlock: Example
	Slide 33: How Can We Resolve Circular Dependency
	Slide 34: Circular Dependency
	Slide 35: Non-Circular Dependency

