
CS444/544
Operating Systems II

Lecture 15

Deadlock (cont.)

Prep. for Quiz 3

5/29/2024

1

Acknowledgement: Slides drawn heavily from Yeongjin Jiang

Recap: Concurrency Bugs

• Code does not have a bug when it runs with single thread could have
a bug when it runs with multiple threads
• Multiple cores, etc.

• What are the types of concurrency bugs?
• Atomicity

• Ordering

• Deadlock

2

Recap: Atomicity: Use Lock

In critical section, NO UPDATE
Do not have TOCTTOU!

This will also block other threads that run
line 5 while thread 2 updates thd->proc_info..

3

Time of check

Time of use

Update!

Recap: How Can We Resolve
the Ordering Issue?
• Use locks and conditional

variables to force a specific
ordering…

Waits
condition..

Sends Signal..

4

Recap: Deadlock

• Two or more threads are
waiting for the other to take
some actions thus neither
makes any progress

Lock L1

Lock L2

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

5

Recap: Circular
 Dependency

Lock A

Lock B

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

6

Recap: Non-Circular
 Dependency

Lock L1

Lock L2

Thread 1

Thread 2

holds

holds
wanted

by

7

Thread-safe Data structure
set_t *set_intersection (set_t *s1, set_t *s2) {

set_t *rv = new set_t();

Mutex_lock(&s1->lock);

Mutex_lock(&s2->lock);

for(int i=0; i<s1->len; i++) {

if(set_contains(s2, s1->items[i])

set_add(rv, s1->items[i]);

Mutex_unlock(&s2->lock);

Mutex_unlock(&s1->lock);

 return rv;

}
8

Thread-safe Data structure

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setA, setB);

set_t *set_intersection (set_t *s1, set_t *s2) {

…

Mutex_lock(&s1->lock);

Mutex_lock(&s2->lock);

…

}

9

Thread-safe Datastructure

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setA, setB);

Mutex_lock(&setA->lock);

Mutex_lock(&setB->lock);

…

Mutex_unlock(&setB->lock);

Mutex_unlock(&setA->lock);

Mutex_lock(&setA->lock);

Mutex_lock(&setB->lock);

…

Mutex_unlock(&setB->lock);

Mutex_unlock(&setA->lock);

10

Is This a Thread-safe Datastructure?
set_t *set_intersection (set_t *s1, set_t *s2) {

set_t *rv = new set_t();

Mutex_lock(&s1->lock);

Mutex_lock(&s2->lock);

for(int i=0; i<s1->len; i++) {

if(set_contains(s2, s1->items[i])

set_add(rv, s1->items[i]);

Mutex_unlock(&s2->lock);

Mutex_unlock(&s1->lock);

 return rv;

}
11

Find a Problem..

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setB, setA);

set_t *set_intersection (set_t *s1, set_t *s2) {

…

Mutex_lock(&s1->lock);

Mutex_lock(&s2->lock);

…

}

12

Find a Problem..

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setB, setA);

Mutex_lock(&setA->lock);

Mutex_lock(&setB->lock);

Mutex_lock(&setB->lock);

Mutex_lock(&setA->lock);

Deadlock!

13

Deadlock Theory

• Deadlocks can only happen if threads are having
• Mutual exclusion

• Hold-and-wait

• No preemption

• Circular wait

• We can eliminate deadlock by removing such conditions…

14

Mutual Exclusion

• Definition
• Threads claims an exclusive control of a resource

• E.g., Threads grabs a lock

15

How to Remove Mutual Exclusion

• Do not use lock
• What???

• Replace locks with atomic primitives
• compare_and_swap(uint64_t *addr, uint64_t prev, uint64_t value);

• if *addr == prev, then update *addr = value;

• lock cmpxchg in x86..

void add (int *val, int amt) {

Mutex_lock(&m);

*val += amt;

Mutex_unlock(&m);

}

void add (int *val, int amt) {

do {

int old = *val;

} while(!CompAndSwap(val, ??, old+amt);

}

old

16

Hold-and-Wait

• Definition
• Threads hold resources allocated to them (e.g., locks they have already

acquired) while waiting for additional resources (e.g., locks they wish to
acquire).

Mutex_lock(&setA->lock);

Mutex_lock(&setB->lock);

17

How to Remove Hold-and-Wait

• Strategy: Acquire all locks atomically once
• Can release lock over time, but cannot acquire again until all have been

released

• How to do this? Use a meta lock, like this:
lock(&meta);

lock(&L1);

lock(&L2);

…

unlock(&meta);

// Critical section code

unlock(…);

18

Remove Hold-and-Wait

set_t *set_intersection (set_t *s1, set_t *s2) {

Mutex_lock(&meta_lock)

Mutex_lock(&s1->lock);

Mutex_lock(&s2->lock);

 …

Mutex_unlock(&s2->lock);

Mutex_unlock(&s1->lock);

 Mutex_unlock(&meta_lock);

}

19

Remove Hold-and-Wait

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setB, setA);

Mutex_lock(&meta_lock);

Mutex_lock(&setA->lock);

Mutex_lock(&setB->lock);

…

Mutex_unlock(&setB->lock);

Mutex_unlock(&setA->lock);

Mutex_unlock(&meta_lock);

Mutex_lock(&meta_lock);

Mutex_lock(&setB->lock);

Mutex_lock(&setA->lock);

Will wait until
Thread 1 finishes
(release meta_lock)!

20

No Preemption

• Definition
• Resources (e.g., locks) cannot be forcibly removed from threads that are

holding them.

lock(A);

lock(B);

…

In case if B is acquired by other thread

All other threads must wait for acquiring A

21

How to Remove No Preemption

Release the lock if obtaining a resource fails…

top:

 lock(A);

 if (trylock(B) == -1) {

 unlock(A);

 goto top;

 }

 …

Can’t acquire B, then
Release A!

22

Circular Wait

• Definition
• There exists a circular chain

of threads such that each
thread holds a resource
(e.g., lock) being requested
by next thread in the chain.

Lock A

Lock B

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

23

How to Remove Circular Wait

24

How to Remove Circular Wait

Lock variable is mostly a pointer, then
provide a correct order of having a lock

e.g.,
if(l1 > l2) {
 Mutex_lock(l1);
 Mutex_lock(l2);
}
else {
 Mutex_lock(l2);
 Mutex_lock(l1);
}

25

Deadlock Theory

• Deadlocks can only happen if threads are having
• Mutual exclusion

• Hold-and-wait

• No preemption

• Circular wait

• We can eliminate deadlock by removing such conditions…

26

Quiz 3

• Next Tuesday (6/3 from 8:00 am to 11:59 pm)
• Open materials (slides, videos, code, and textbook)

• You will have 2 attempts for the quiz

27

Quiz 3 Coverage

• Lab 3 (User/Kernel, System Call and Interrupt Handling)

• Lab 4 (Preemptive Multitasking & Copy-on-write Fork)

• Lecture 12: Multithreading and Synchronization

• Lecture 13-14: Lock and Thread Synchronization

• Lecture 14-15: Concurrency Bugs and Deadlock

28

Sample Questions

• In x86, which of the following instruction runs atomically?
• cmpxchg

• popa

• lea

• xchg

• mov

29

Sample Questions

• In x86, which of the following instruction runs atomically?
• cmpxchg

• popa

• lea

• xchg

• mov

30

Sample Questions

• In x86, which of the following instruction runs atomical test and test-
and-set?
• cmpxchg

• int $0x30

• lock cmpxchg

• lock

• xchg

31

Sample Questions

• In x86, which of the following instruction runs atomical test and test-
and-set?
• cmpxchg

• int $0x30

• lock cmpxchg

• lock

• xchg

cmpxchg in x86 is not a hardware atomic instruction. However, when used with
the lock prefix, the instruction will be an atomic test and test-and-set
instruction.

32

Sample Questions

• In x86, which register is being used for storing “compare” value when
running the cmpxchg instruction?
• CR3

• EAX

• EBX

• ESP

• EIP

33

Sample Questions

• In x86, which register is being used for storing “compare” value when
running the cmpxchg instruction?
• CR3

• EAX

• EBX

• ESP

• EIP

34

Sample Questions

• T/F: Page table is not relevant to data racing / thread synchronization.

35

Sample Questions

• T/F: Page table is not relevant to data racing / thread synchronization.

True. Page table is for virtual memory, and thus is not relevant to thread sync.

36

Sample Questions

• In JOS lab, which value will the fork() returns to the child environment
if the function has been executed successfully?
• 0

• 1

• The envid of the parent env

• The envid of the child env

• The address of the page table of the child env

37

Sample Questions

• In JOS lab, which value will the fork() returns to the child environment
if the function has been executed successfully?
• 0

• 1

• The envid of the parent env

• The envid of the child env

• The address of the page table of the child env

Fork returns:

Parent: child envid

Child: 0

38

Sample Questions

• Which of the following stores the information about the reason of a
page fault?
• EAX

• CR2

• CR3

• eflags

• Trapframe

39

Sample Questions

• Which of the following stores the information about the reason of a
page fault?
• EAX

• CR2

• CR3

• eflags

• Trapframe

Error code in trapframe

40

Sample Questions

• Will this implementation cause deadlock (assuming no infinite loop in
the critical section)?

41

Sample Questions

• Will this implementation cause deadlock (assuming no infinite loop in
the critical section)?

Thread 1:

spin_lock(&meta);

spin_lock(&l1);

spin_lock(&l2);

spin_unlock(&meta);

…

spin_unlock(&l2);

spin_unlock(&l1);

42

Thread 2:

spin_lock(&meta);

spin_lock(&l2);

spin_lock(&l1);

spin_unlock(&meta);

…

spin_unlock(&l1);

spin_unlock(&l2);

	Slide 1: CS444/544 Operating Systems II
	Slide 2: Recap: Concurrency Bugs
	Slide 3: Recap: Atomicity: Use Lock
	Slide 4: Recap: How Can We Resolve the Ordering Issue?
	Slide 5: Recap: Deadlock
	Slide 6: Recap: Circular Dependency
	Slide 7: Recap: Non-Circular Dependency
	Slide 8: Thread-safe Data structure
	Slide 9: Thread-safe Data structure
	Slide 10: Thread-safe Datastructure
	Slide 11: Is This a Thread-safe Datastructure?
	Slide 12: Find a Problem..
	Slide 13: Find a Problem..
	Slide 14: Deadlock Theory
	Slide 15: Mutual Exclusion
	Slide 16: How to Remove Mutual Exclusion
	Slide 17: Hold-and-Wait
	Slide 18: How to Remove Hold-and-Wait
	Slide 19: Remove Hold-and-Wait
	Slide 20: Remove Hold-and-Wait
	Slide 21: No Preemption
	Slide 22: How to Remove No Preemption
	Slide 23: Circular Wait
	Slide 24: How to Remove Circular Wait
	Slide 25: How to Remove Circular Wait
	Slide 26: Deadlock Theory
	Slide 27: Quiz 3
	Slide 28: Quiz 3 Coverage
	Slide 29: Sample Questions
	Slide 30: Sample Questions
	Slide 31: Sample Questions
	Slide 32: Sample Questions
	Slide 33: Sample Questions
	Slide 34: Sample Questions
	Slide 35: Sample Questions
	Slide 36: Sample Questions
	Slide 37: Sample Questions
	Slide 38: Sample Questions
	Slide 39: Sample Questions
	Slide 40: Sample Questions
	Slide 41: Sample Questions
	Slide 42: Sample Questions

