CS444/544
Operating Systems ||

Lecture 16

Quiz 3 sol. And Final Course Review
6/5/2024

Acknowledgement: Slides drawn heavily from Yeongjin Jiang

) Oregon State

Due Reminders

* 6/10 11:59 pm: 100% for Lab 4
* 6/12 11:59 pm: 75% for Lab 4 and 50% for Lab 1-3
e After 6/12 11:59 pm: 0%

* Questions?
* | will do another round of regrade for lab 1-3 this weekend

| Oregon State

el

Today’s topic

* Quiz 3 Report

* Final course review

) Oregon State

Week 1: Booting

Week 2: Address translation

Week 3: Virtual Memory Management

Week 4: Quiz on Virtual Memory

Week 5: User/Kernel Context Switch

Week 6: System Calls and Page Fault

Week 7: Quiz on Syscalls, Faults, and Exceptions
Week 8: Lock and Thread Synchronization
Week 9: Concurrency Bugs and Deadlock

Week 10: Quiz 3 & Review

 How does x86 Processors boot with BIOS?
* Which mode does the processor start with?
* Real mode!

» Addressing model in early stage of the booting
* Seg * 16 + offset

* BIOS / Boot sector

 Where (which address) does BIOS load the boot sector?
* 0x7c00

e How does boot sector load the kernel?
* ELF header

* Processor modes: Real / Protected

* How does CPU use memory segmentation in those modes?
* Global descriptor Table (GDT)

Oregon State

* Segmentation
* Seg * 16 + offset
 GDT — base + offset, offset < limit

* Paging
* Page table / page directory
* Translation Lookaside Buffer (TLB)
* When to invalidate TLB?

When updates CR3 (invalidate all entries)
When updates PTE (invalidate 1 entry)

Protected-Mode Address Translation s
X

Selector Linear Physical
Segment Address Page Address
Translation Translation
Logical
Address

Logical Address Linear Address
32

16

G DT/ LDT

0x08048000 0x8048000 0x10000
0x8049000 0x11000
0x804a000 0x50000

Offset (12-bits)

Page number (20-bits)
Mem access
#1 0x08048

CR3[0x20] Directory Index
(10-bits)

Table index
(10-bits)

Phy. Page number (20-bits)
0x10000

Offset (12-bits)
0x000

Page Directory Entry / e =
em access

Addr PT / 0 Addr PT #3 (required)

Addr PT i 0x10000
/ PDE[OX48]

0x20 Addr PT/ Mem access0x49 0x11000
0x3ff Addr PT #2 0x4a 0x50000

* Page Permission
* How can we set access permissions to a memory page?
* Read/Write, Kernel/User
 How can we set a conflicting memory permissions, e.g.,
 Kernel RW, User R

boot map region(kern pgdir, KERNBASE, -KERNBASE,
0, PTE W | PTE P);

Oregon State

B

* Indexing Page Directory / Tables

* [10 bit] [10 bit] [12 bit]

* Why 10 bits?
* 12 bits for page offset: 4096 bytes

* 4 byte per each page directory/table entries
* 1024 entries, indexed by 10 bits

* [6 bit] [6 bit] [6 bit] [6 bit] [8 bit]
» Page size: 256 bytes, entries: 64, 4 levels = slow
 [6 bit] [12 bit] [14 bit]

* Page size: 16384 bytes, entries: 4096, wasting
memory

0x08048000

Page number (20-bits)
0x08048

Directory Index
(10-bits)
0x20

Offset (12-bits)
(0)(0]0]0)

N
N
=
N

Z

One page,
4KB

f

4 i Oregon State

el

8000be: 00 00 00 00 $0x0,%
8000c3: 01 00 00 00 $0x1,%
8000c8: 89 %)%
8000ca: 89 %)%
8000cc: 89 %)%
8000ce: 89 %)%
8000d0: 30 $0x30

: , 0, 0, 0, 0)

Ring

* How many rings are available in x86 processor?

* 4levels

* Which ring level do we use for kernel? For user?
* Ring O for kernel, Ring 3 for user

 Where does CPU store the current ring level?
* The last 2 bits of the CS register

if ((tf->tf_CS & 3) == 3) { void
User/Kernel Switch env_pop_tf(struct Trapframe *tf)

User Level (Ring 3)

. . {
e Difference between library call and system call
. . curenv->env_cpunum = cpunum();
* How can we switch an execution from
asm volatile(
* User -> kernel? "\ tmovL %0,%%esp
* syscalls (software interrupt) “\tpopal\n™
"\tpopl %%es
e Kernel -> User? "\tpopl %%ds\n"
. i "\taddl $0x8,%%esp
Iret "\tiret

"g" (tf) : "memory");
panic("iret failed");

}

SETGATE (idt[T DIVIDE], 0, GD_KT, t divide, 0);

SETGATE (idt[T DEBUG], 0, GD KT, t debug, 0);

SETGATE (idt[T NMI], ©, GD KT, t _nmi, 0);

.| 2 : SETGATE (idt[T BRKPT], 0, GD KT, t brkpt, 3);
nterrupt & exceptions SETGATE (idt[T_OFLOW], 0, GD_KT, t _oflow, 0);

SETGATE (idt[T BOUND], ©, GD KT, t bound, 0);

* Interrupt SETGATE (idt[T ILLOP], 0, GD KT, t _illop, 0);
° Exceptions and Fault SETGATE(idt[T_DEVICE], 0, GD KT, t device, 0);
SETGATE (idt[T_DBLFLT], 0, GD_KT, t_dblflt, 0);
 Interrupt Descriptor Table (IDT) and Interrupt handlers SETGATE(idt[T_TSS], ©, GD_KT, t_tss, 0);
_ SETGATE (idt[T_SEGNP], 0, GD KT, t_segnp, 0);
* How can we set interrupt handlers? SETGATE (idt[T_STACK], 0, GD_KT, t_stack, 0);

_ e _ SETGATE (idt[T_GPFLT], 0, GD_KT, t_gpflt, 0);
* How can we determine which interrupt the current one is? \seTGaTE(idt[T PGFLT], 0, GD KT, t pgflt, 0);

* E.g., how can we get the interrupt number? SETGATE(idt[T FPERR], 0, GD KT, t fperr, 0);

. SETGATE (idt[T_ALIGN], 0, GD KT, t_align, 0);
Pushed by CPU? Pushed by JOS? SETGATE (idt[T _MCHK], 0, GD KT, t_mchk, 0);

SETGATE (idt[T_SIMDERR], 0, GD KT, t_simderr, 0);

.globl name

.type name, @function

.align 2

name: \
pushl $(num)

jmp alltraps

%RAP framé at Oxf@1co000

edi
esi
ebp
oesp
ebx
edx
ecx
eax
es
ds
trap
cr2
err
eip
cS
flag

Ox00000000
Ox00000000
Oxeebfdfdo
Oxefffffdc
Ox00000000
Ox00000000
Ox00000000
Oxeec®000
Ox----0023
Ox----0023
Ox0000000e
Ox00000000
Ox00000004
0x00800039
Ox----001b
Ox00000096
Oxeebfdfb8
e - -0023

* Understanding the Trapframe

Page Fault

[user, read, not-preg

| 0x00000 | old SS
| old ESP
| old EFLAGS

| Ox00000 | old CS
| old EIP
error code

What kind of fault it is?

What is the faulting address?
What is the reason for the fault?
What is the address of instruction that causes the

fault?

Which values were generated by CPU?
Which values were generated by JOS?

Which ring level it is?

KSTACKTOP
"
" . 8
"-12
" - 16
" .20

4 i Oregon State

el

e Page fault workflow
* When does it happen?

* How can we know the faulting address and the cause of the
fault?

* How can we resolve the fault and get back to the normal
execution?

* Page fault use cases (refer to the slide of Lecture 10)
* Automatic stack allocation

* Copy-on-write

* Memory Swapping

* Data racing lock()

* What is this? edx = value
* Why is this bad? eax = counter
* |nconsistent/incorrect result eax = edx + eax

* How can we resolve this? counter = eax
e Mutual exclusion unlock()
* Lock

* How can we implement locks?

void *
« What’s the difference between count_xchg_lock(void *args) {
* Test-and-set (atomic) for (i:t 'J.L-=0I;((;.:'L< ETCOUNT; ++1) {
. : xchg_loc ock);
Iest and test-and-set (atomic) sched_yield();
» *Backoff count += 1,
xchg_unlock(&lock);
}

Read

Thread 1::
if (thd->proc_info) { Time of check

fputs (thd->proc_info, ...); Timeofuse

TOCTTOU (Time of check to time of use) bug
* What is this and when does it happen?

} Time-of-check-to-time-of-use bug

Thread 2::
thd->proc_info = NULL;
* How can we prevent this? Write!

* Another thread executes between

time of check and time of use TOCTTOU

O & NN O O b W N =

e Use lock/unlock

Deadlock holds
* Four necessary conditions of deadlock e LOCK L1
* Mutual Exclusion

» Critical section wanted wanted
* Hold-and-wait by

by
* Meta lock
* No Preemption ﬂ—
* Unlock if fail to acquire a lock

e Circular wait ﬁ‘

Oregon State

Ei

e How to build OS internals in a nutshell

Bootloader (JOS Lab 1)

Setting up virtual memory (JOS Lab 2)
Setting up interrupt handlers (JOS Lab 3a)
Implementing system calls (JOS Lab 3b)

Implementing locks (lock-example
repository)

Implementing page fault handler and copy-
on-write fork (JOS Lab 4)

add $8, %esp

mov 32(%esp), %ebx
mov 40(%esp), %eax
sub $4, %eax

mov %ebx, (%eax)

popa

add $4, %esp
popf

pop %esp

lea -4(%esp), %esp
ret

dumbfork: (2.7s)

Part A score: 5/5
faultread: (1.8s)
faultwrite: (2.2s)
faultdie: (2.0s)
faultregs: (1.9s)
faultalloc: (2.0s)
faultallocbhad: (1.9s)
faultnostack: (2.2s)
faultbadhandler: (0.9s)
faultevilhandler: (1.9s)
forktree: (2.1s)

Part B score: 50/50

spin: (2.1s)
stresssched: (2.2s)
sendpage: (1.7s)
pingpong: (2.0s)
primes: (4.1s)

Part C score: 25/25

Score: 80/80

AN

EAE

Oregon State

Be Confident in Computer Systems

* Now you have experience in
e Terminal IDE tools (tmux, git, vim, ctags, make)
3%’ » Kernel-level (Ring 0) Debugging (via remote gdb)
e x86 Assembly
* Paging and address translation
» Software/hardware interrupt and exception handling
* Enabling preemptive multitasking

* And you wrote code for multi-core OS (pedagogical)

el

* i Oregon State

Final Remarks

* Thank you so much for your commitment to this course

e Submit all your work by 6/10 11:59pm
* 100% for lab4
* 75% for lab4 and 50% for lab1-3 if submitted by 6/12 11:59 pm

e Future improvements?

People

Student Learning
Experience

* i Oregon State

el

	Slide 1: CS444/544 Operating Systems II
	Slide 2: Due Reminders
	Slide 3: Today’s topic
	Slide 4: Topics Covered
	Slide 5: Booting (Week 1, JOS Lab 1)
	Slide 6: Address Translation (Week 2)
	Slide 7: Virtual Memory Management (Week 3, JOS Lab 2)
	Slide 8
	Slide 9: User/Kernel Switch (Week 5, JOS Lab 3)
	Slide 10: Interrupt, Syscall, Exception (Week 5, JOS Lab 3)
	Slide 11: Interrupt, Syscall, Exceptions (Week 6, JOS Lab 3)
	Slide 12: Page Fault & Copy-on-Write (Week 6, JOS Lab3&4)
	Slide 13: Synchronization and Locks (Week 8)
	Slide 14: Concurrency Bugs and Deadlock (Week 9)
	Slide 15: You Have Learned Many Things from CS 444/544
	Slide 16: Be Confident in Computer Systems
	Slide 17: Final Remarks

