
CS444/544
Operating Systems II

Lecture 8

User/Kernel Context Switch

4/29/2024

1

Acknowledgement: Slides drawn heavily from Yeongjin Jiang

Today’s Topic

• User/Kernel Space Switch
• How does the OS kernel run a program in

Ring 3 (user level)?

• How does the OS kernel take back the
execution to Ring 0 (kernel)?

• System call
• How could a user level program let OS

serve for them?

2

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

2

Today’s Topic

• Process Context Switch
• How could our CPU run multiple applications

at the same time?

• 3 design candidates
• Not switching

• Co-operative Multitasking

• Preemptive Multitasking

3

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

3

Today’s Topic

• User/Kernel Space Switch
• Interrupt

• System calls

• Fault / Exceptions

4

Kernel (Ring 0)

• Runs with the highest privilege level (Ring 0)

• Configures system (devices, memory, etc.)

• Manages hardware resources
• Disk, memory, network, video, keyboard, etc.

• Manages other jobs
• Processes and threads

• Serves as trusted computing base (TCB)
• Set privilege

• Restrict other jobs from doing something bad..

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

5

User (Ring 3)

• Runs with a restricted privilege (Ring 3)
• The privilege level for running an application…

• Most of regular applications runs in this level

• Cannot access kernel memory
• Can only access pages set with PTE_U

• Cannot talk directly to hardware devices
• Kernel must mediate the access OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

6

A High-level Overview of
User/Kernel Execution

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

7

A High-level Overview of
User/Kernel Execution

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

printf(“CS444”)

sys_write(1, “CS444”, 5);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “CS444”, 5)

A kernel function

8

Interrupt!, switch from ring3 to ring0

A High-level Overview of
User/Kernel Execution

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

A library call in ring 3

A system call, From ring 3 iret (ring 0 to ring 3)

ret (ring 3)

A kernel function

9

printf(“CS444”)

sys_write(1, “CS444”, 5);

do_sys_write(1, “CS444”, 5)

Interrupt!, switch from ring3 to ring0

A Library Call

• A function call within the application’s memory space

• All regular C/C++ API calls are library calls
• fwrite(), printf(), time(), srand(), etc.

• Calls that you did not implement but prepared by others (in ring 3)

• From Ring 3 to Ring 3

User Level (Ring 3)

Libraries

printf()A library call in ring 3

10

A System Call

• A function call from applications that request OS to do something
special for them

• System APIs
• I/O access (read(), write(), send(), recv(), etc.)

• Process creation, destruction (exec(), fork(), kill(), etc.)

• Other hardware access..

• From Ring 3 to Ring 0

User Level (Ring 3)

Libraries

printf()

sys_write()A system call,
From ring 3 to ring 0

OS Kernel (Ring 0)
11

Returning from a Call

• Returning from a Library Call
• ret

• No ring switch (ring 3 -> ring 3)

• Returning from a System Call
• iret (interrupt return)

• Ring switch happens (ring 0 -> ring 3)

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

printf()

sys_write()

do_sys_write()

iret (ring 0 to ring 3)

ret (ring 3)

12

Interrupt!

A High-level Overview of
User/Kernel Execution

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

send() A library call in ring 3

sys_send()
A system call,
From ring 3 to ring 0

do_sys_send()

13

Interrupt!

A High-level Overview of
User/Kernel Execution

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

send() A library call in ring 3

sys_send()
A system call,
From ring 3 to ring 0

do_sys_send()

iret (ring 0 to ring 3)

ret (ring 3)

14

How does Kernel Execute an Application?

OS Kernel (Ring 0)

User Level (Ring 3)

Lab1: Booting

Lab2: Set VM

Lab3: Set kernel/user env

How does an OS run an application?

15

How does Kernel Execute an Application?

OS Kernel (Ring 0)

Ring 3

16

How does Kernel Execute an Application?

OS Kernel (Ring 0)

Ring 3

1. Prepare a process,
an environment for running
an application

Assign a separated
Virtual Memory Space

New page directory
New page table
Etc..

17

How does Kernel Execute an Application?

OS Kernel (Ring 0)

Ring 3

1. Prepare a process,
an environment for running
an application

2. Put an application!
 load code!

18

How does Kernel Execute an Application?

OS Kernel (Ring 0)

Ring 3

1. Prepare a process,
an environment for running
an application

2. Put an application!
 load code!

3. Execute!

19

How does Kernel Execute an Application?

OS Kernel (Ring 0)

Ring 3

1. Prepare a process,
an environment for running
an application

2. Put an application!
 load code!

3. Execute!

iret (ring 0 to ring 3)

20

How does Kernel Get the Execution Back?

OS Kernel (Ring 0)

Ring 3

21

How does Kernel Get the Execution Back?

OS Kernel (Ring 0)

Ring 3

22

How does Kernel Get the Execution Back?

OS Kernel (Ring 0)

Ring 3

sys_write()

System call!

23

How does Kernel Get the Execution Back?

OS Kernel (Ring 0)

Ring 3

sys_write()

System call!

do_sys_write()

24

Is System Call the Only Way to
Execute in Kernel?
• No

• In such a case, we have lots of problems..

• E.g., kernel waits until an application runs a system call

• What if an application never calls a system call????

• We have the following ways to switch
• System call (ring 3 -> ring 0)

• Interrupt (usually runs in ring 0, sometimes runs in ring 3)

• Fault/Exception (runs in ring 0)

25

User Execution Strawman 1

• Just run user application

• Seems OK, but…

OS Kernel (Ring 0)

Ring 3 iret (ring 0 to ring 3)

26

User Execution Strawman 1’

• Just run user application

• What happens if we run 2
applications at the same
time?

• How can we switch
execution?

OS Kernel (Ring 0)

Ring 3

27

User Execution Strawman 2

• Co-operative Multitasking

• Yield()
• Surrender the execution right

when a process finishes /
pauses its execution

OS Kernel (Ring 0)

Ring 3

yield()

28

User Execution Strawman 2

• Co-operative Multitasking

• Yield()
• Surrender the execution right

when a process finishes /
pauses its execution

• Schedule()
• Execute a different process..

OS Kernel (Ring 0)

Ring 3

Schedule()

iret (ring 0 to ring 3)

29

User Execution Strawman 2’

• What if a process runs

OS Kernel (Ring 0)

Ring 3

No such yield()
Too long

Much wait

30

User Execution Strawman 2’

• What if a process runs

OS Kernel (Ring 0)

Ring 3

No such yield()
Too long

Much wait

31

User Execution Strawman 3

• Preemptive Multitasking (Lab 4)

• CPU generates an interrupt to
force execution at kernel after
some time quantum
• E.g., 1000Hz, on each 1ms..

OS Kernel (Ring 0)

Ring 3

After 1ms

Timer interrupt!
32

User Execution Strawman 3

• Preemptive Multitasking (Lab 4)

• CPU generates an interrupt to
force execution at kernel after
some time quantum
• E.g., 1000Hz, on each 1ms..

• Guaranteed execution in kernel
• Let kernel mediate resource

contention

OS Kernel (Ring 0)

Ring 3

33

User Execution Strawman 3

• Preemptive Multitasking (Lab 4)

• CPU generates an interrupt to
force execution at kernel after
some time quantum
• E.g., 1000Hz, on each 1ms..

• Guaranteed execution in kernel
• Let kernel mediate resource

contention

OS Kernel (Ring 0)

Ring 3

Schedule()

iret (ring 0 to ring 3)

34

How are Popular OSes doing?

35

Trap: Interrupt/Faults/Exception

• Trap
• An event that forces CPU to execute (some) code in kernel
• Will run trap handler

• Interrupts
• Hardware interrupt
• System call (software interrupt)

• Faults
• An error that OS may recover and continue execution (e.g., page fault)

• Exception
• An error that OS cannot recover and must stop the current execution (e.g., divide by zero)

• Many others, please refer to the Intel Manual
• Chapter 6 of volume 3A

36

Trap Summary

37

TRAP

Hardware
Interrupt

(Asynchronous)

Software
Interrupt

(Synchronous)

Exceptions
(synchronous)

Faults
(synchronous,
Recoverable)

Hardware Interrupt

• A way of hardware interacting with CPU

• Example: a network device
• NIC: “Hey, CPU, I have received a packet for the OS, so please wake up the OS to

handle the data”
• CPU: call the interrupt handler for network device in ring 0 (set by the OS)

• Asynchronous (can happen at any time of execution)
• It’s a request from a hardware, so it comes at any time of CPU’s execution

• Read
• https://en.wikipedia.org/wiki/Intel_8259
• https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller

38

https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller

Software Interrupt

• A software method to run code in ring 0 (e.g., int $0x30)
• Telling CPU that ”Please run the interrupt handler at 0x30”

• Synchronous (caused by running an instruction, e.g., int $0x30)

• System call
• int $0x30 system call in JOS

39

Exceptions/Faults

• Exceptions
• An error caused by the current execution (may or may not be recovered)
• Examples of non-recoverable exception (cannot continue the execution)

• Triple fault
• Divide by zero
• Breakpoint

• Fault
• An error caused by the current execution that may be recovered and continue the execution
• Examples

• Page fault
• Double fault

• Synchronous (an execution of an instruction can generate this)
• E.g., divide by 0

40

Handling Interrupt/Exceptions

• Set an Interrupt Descriptor Table (IDT)

Interrupt Number Code address

0 (Divide error) 0xf0130304

1 (Debug) 0xf0153333

2 (NMI, Non-maskable Interrupt) 0xf0183273

3 (Breakpoint) 0xf0223933

4 (Overflow) 0xf0333333

…

8 (Double Fault) 0xf0222293

…

14 (Page Fault) 0xf0133390

... …

0x30 (syscall in JOS) 0xf0222222 41

Opening a file

OS Kernel (Ring 0)

Ring 3App calls open()

Set arguments (fn, flag)
int $0x30 (syscall in JOS)

Interrupt!

Consult IDT

Run kernel!

Interrupt Number Code address

0 (Divide error) 0xf0130304

1 (Debug) 0xf0153333

2 (NMI) 0xf0183273

3 (Breakpoint) 0xf0223933

4 (Overflow) 0xf0333333

…

8 (Double Fault) 0xf0222293

…

14 (Page Fault) 0xf0133390

... …

0x30 (syscall in JOS) 0xf0222222

42

At the kernel (in running open())

• Access arguments from Ring 3
• Need to check its security…

• Access disk to open a file
• Need to check permissions…

• Return a file descriptor
• iret

OS Kernel (Ring 0)

Ring 3

43

Summary

• A user program can invoke a system call to ‘request’ the OS to run
code in a higher privileged level, ring 0
• System call, and it is a synchronous interrupt

• A hardware would like to talk to the CPU to tell that blocks of data is
ready for the OS
• Hardware interrupt, an asynchronous interrupt

• A program generated an error that is not recoverable, a triple fault
• A non-recoverable exception, synchronous

• A program generated a page fault
• Fault, because OS regards page fault as recoverable error, synchronous
• (we will learn more about this in coming lectures)

44

	Slide 1: CS444/544 Operating Systems II
	Slide 2: Today’s Topic
	Slide 3: Today’s Topic
	Slide 4: Today’s Topic
	Slide 5: Kernel (Ring 0)
	Slide 6: User (Ring 3)
	Slide 7: A High-level Overview of User/Kernel Execution
	Slide 8: A High-level Overview of User/Kernel Execution
	Slide 9: A High-level Overview of User/Kernel Execution
	Slide 10: A Library Call
	Slide 11: A System Call
	Slide 12: Returning from a Call
	Slide 13: A High-level Overview of User/Kernel Execution
	Slide 14: A High-level Overview of User/Kernel Execution
	Slide 15: How does Kernel Execute an Application?
	Slide 16: How does Kernel Execute an Application?
	Slide 17: How does Kernel Execute an Application?
	Slide 18: How does Kernel Execute an Application?
	Slide 19: How does Kernel Execute an Application?
	Slide 20: How does Kernel Execute an Application?
	Slide 21: How does Kernel Get the Execution Back?
	Slide 22: How does Kernel Get the Execution Back?
	Slide 23: How does Kernel Get the Execution Back?
	Slide 24: How does Kernel Get the Execution Back?
	Slide 25: Is System Call the Only Way to Execute in Kernel?
	Slide 26: User Execution Strawman 1
	Slide 27: User Execution Strawman 1’
	Slide 28: User Execution Strawman 2
	Slide 29: User Execution Strawman 2
	Slide 30: User Execution Strawman 2’
	Slide 31: User Execution Strawman 2’
	Slide 32: User Execution Strawman 3
	Slide 33: User Execution Strawman 3
	Slide 34: User Execution Strawman 3
	Slide 35: How are Popular OSes doing?
	Slide 36: Trap: Interrupt/Faults/Exception
	Slide 37: Trap Summary
	Slide 38: Hardware Interrupt
	Slide 39: Software Interrupt
	Slide 40: Exceptions/Faults
	Slide 41: Handling Interrupt/Exceptions
	Slide 42: Opening a file
	Slide 43: At the kernel (in running open())
	Slide 44: Summary

