CS444/544 Operating Systems II

Lecture 8 User/Kernel Context Switch 4/29/2024

Acknowledgement: Slides drawn heavily from Yeongjin Jiang

Today's Topic

- User/Kernel Space Switch
 - How does the OS kernel run a program in Ring 3 (user level)?
 - How does the OS kernel take back the execution to Ring 0 (kernel)?
- System call
 - How could a user level program let OS serve for them?

Today's Topic

- Process Context Switch
 - How could our CPU run multiple applications at the same time?
- 3 design candidates
 - Not switching
 - Co-operative Multitasking
 - Preemptive Multitasking

Today's Topic

- User/Kernel Space Switch
 - Interrupt
 - System calls
 - Fault / Exceptions

Kernel (Ring 0)

- Runs with the highest privilege level (Ring 0)
- Configures system (devices, memory, etc.)
- Manages hardware resources
 - Disk, memory, network, video, keyboard, etc.
- Manages other jobs
 - Processes and threads
- Serves as trusted computing base (TCB)
 - Set privilege
 - Restrict other jobs from doing something bad..

User (Ring 3)

- Runs with a restricted privilege (Ring 3)
 - The privilege level for running an application...
- Most of regular applications runs in this level
- Cannot access kernel memory
 - Can only access pages set with PTE_U
- Cannot talk directly to hardware devices
 - Kernel must mediate the access

A High-level Overview of User/Kernel Execution

A High-level Overview of User/Kernel Execution

A High-level Overview of User/Kernel Execution

A Library Call

- A function call within the application's memory space
- All regular C/C++ API calls are library calls
 - fwrite(), printf(), time(), srand(), etc.
 - Calls that you did not implement but prepared by others (in ring 3)
- From Ring 3 to Ring 3

printf

A System Call

- A function call from applications that request OS to do something special for them
- System APIs
 - I/O access (read(), write(), send(), recv(), etc.)
 - Process creation, destruction (exec(), fork(), kill(), etc.)
 - Other hardware access..
- From Ring 3 to Ring 0

Returning from a Call

- Returning from a Library Call
 - ret
 - No ring switch (ring 3 -> ring 3)

- Returning from a System Call
 - iret (interrupt return)
 - Ring switch happens (ring 0 -> ring 3)

A High-level Overview of User/Kernel Execution

A High-level Overview of User/Kernel Execution

int main() {
send(4, "I have a question...", 30, 0);

Lab1: Booting Lab2: Set VM Lab3: Set kernel/user env

How does an OS run an application?

1. Prepare a process, an environment for running an application

Assign a separated Virtual Memory Space

New page directory New page table Etc..

1. Prepare a process, an environment for running an application

2. Put an application! load code!

1. Prepare a process, an environment for running an application

2. Put an application! load code!

3. Execute!

1. Prepare a process, an environment for running an application

2. Put an application! load code!

3. Execute!

22

Is System Call the Only Way to Execute in Kernel?

• No

- In such a case, we have lots of problems..
- E.g., kernel waits until an application runs a system call
- What if an application never calls a system call????
- We have the following ways to switch
 - System call (ring 3 -> ring 0)
 - Interrupt (usually runs in ring 0, sometimes runs in ring 3)
 - Fault/Exception (runs in ring 0)

• Just run user application

• Seems OK, but...

- Just run user application
- What happens if we run 2 applications at the same time?

OS Kernel (Ring 0)

• How can we switch execution?

- Co-operative Multitasking
- Yield()
 - Surrender the execution right when a process finishes / pauses its execution

yield() Ring 3

OS Kernel (Ring 0)

- Co-operative Multitasking
- Yield()
 - Surrender the execution right when a process finishes / pauses its execution
- Schedule()
 - Execute a different process..

Too long No such yield()

• What if a process runs

OS Kernel (Ring 0)

Too long

• What if a process runs

After 1ms

- Preemptive Multitasking (Lab 4)
- CPU generates an interrupt to force execution at kernel after some time quantum
 - E.g., 1000Hz, on each 1ms..

- Preemptive Multitasking (Lab 4)
- CPU generates an interrupt to force execution at kernel after some time quantum
 - E.g., 1000Hz, on each 1ms..
- Guaranteed execution in kernel
 - Let kernel mediate resource contention

- Preemptive Multitasking (Lab 4)
- CPU generates an interrupt to force execution at kernel after some time quantum
 - E.g., 1000Hz, on each 1ms..
- Guaranteed execution in kernel
 - Let kernel mediate resource contention

How are Popular OSes doing?

Operating System 🗢	Preemption +
Amiga OS	Yes
FreeBSD	Yes
Linux kernel before 2.6.0	Yes
Linux kernel 2.6.0–2.6.23	Yes
Linux kernel after 2.6.23	Yes
classic Mac OS pre-9	None
Mac OS 9	Some
macOS	Yes
NetBSD	Yes
Solaris	Yes
Windows 3.1x	None
Windows 95, 98, Me	Half
Windows NT (including 2000, XP, Vista, 7, and Server)	Yes

Trap: Interrupt/Faults/Exception

- Trap
 - An event that forces CPU to execute (some) code in kernel
 - Will run trap handler
- Interrupts
 - Hardware interrupt
 - System call (software interrupt)
- Faults
 - An error that OS may recover and continue execution (e.g., page fault)
- Exception
 - An error that OS <u>cannot</u> recover and must stop the current execution (e.g., divide by zero)
- Many others, please refer to the Intel Manual
 - Chapter 6 of volume 3A

Trap Summary

Hardware Interrupt

- A way of hardware interacting with CPU
- Example: a network device
 - NIC: "Hey, CPU, I have received a packet for the OS, so please wake up the OS to handle the data"
 - CPU: call the interrupt handler for network device in ring 0 (set by the OS)
- <u>Asynchronous</u> (can happen at any time of execution)
 - It's a request from a hardware, so it comes at any time of CPU's execution
- Read
 - <u>https://en.wikipedia.org/wiki/Intel_8259</u>
 - <u>https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller</u>

Software Interrupt

48

- A software method to run code in ring O (e.g., int <u>\$0x30</u>)
 - Telling CPU that "Please run the interrupt handler at 0x30"
- Synchronous (caused by running an instruction, e.g., int \$0x30)
- System call
 - int \$0x30 ← system call in JOS

Exceptions/Faults

- Exceptions
 - An error caused by the current execution (may or may not be recovered)
 - Examples of non-recoverable exception (cannot continue the execution)
 - Triple fault
 - Divide by zero
 - Breakpoint
- Fault
 - An error caused by the current execution that may be recovered and continue the execution
 - Examples
 - Page fault
 - Double fault
- Synchronous (an execution of an instruction can generate this)
 - E.g., divide by 0

Handling Interrupt/Exceptions

• Set an Interrupt Descriptor Table (IDT)

Interrupt Number	Code address
0 (Divide error)	0xf0130304
1 (Debug)	0xf0153333
2 (NMI, Non-maskable Interrupt)	0xf0183273
3 (Breakpoint)	0xf0223933
4 (Overflow)	0xf0333333
8 (Double Fault)	0xf0222293
14 (Page Fault)	0xf0133390
0x30 (syscall in JOS)	Oxf0222222 41

Figure 6-1. Relationship of the IDTR and IDT

At the kernel (in running **open ()**)

- Access arguments from Ring 3
 - Need to check its security...
- Access disk to open a file
 - Need to check permissions...
- Return a file descriptor
 - iret

Summary

- A user program can invoke a system call to 'request' the OS to run code in a higher privileged level, ring 0
 - System call, and it is a synchronous interrupt
- A hardware would like to talk to the CPU to tell that blocks of data is ready for the OS
 - Hardware interrupt, an asynchronous interrupt
- A program generated an error that is not recoverable, a triple fault
 - A non-recoverable exception, synchronous
- A program generated a page fault
 - Fault, because OS regards page fault as recoverable error, synchronous
 - (we will learn more about this in coming lectures)