SNR Calculation and Spectral Estimation [S&T Appendix A] or, How *not* to make a mess of an FFT

- 0 Make sure the input is located in an FFT bin
- **1** Window the data!

A Hann window works well.

- **2** Compute the FFT
- **3** SNR = power in signal bins / power in noise bins
- 4 If you want to make a spectral plot
 - i. Apply sine-wave scaling
 - ii. State the noise bandwidth (NBW)
 - iii. Smooth the FFT

FT and DFT (1)

• Fourier Transform:

 $x(t) \longleftrightarrow X(\omega)$

- If x(t) is sampled $x(nT) \leftrightarrow \sum_{n=-\infty}^{\infty} x(nT) \cdot e^{-j\omega nT}$
- Estimation of spectrum: DFT / FFT

$$X(f_k) = \sum_{n=0}^{N-1} x(nT) \cdot e^{-j2\pi nTf_k} = x(nT) * h_k(n)$$

where $f_k = k / (NT), k=0, 1, 2, ..., N-1$ $h_k(n) = \begin{cases} e^{j2\pi kn/N}, 0 \le n \le N \\ 0, \text{ otherwise} \end{cases}$

FT and DFT (2)

• Generally, in Fourier Transformation, the rule is

Sampled
$$\leftrightarrow$$
 Periodic

• If x(nT) is <u>not</u> periodic with period *NT*, the DFT calculates the spectrum of a discontinuous signal -- bad estimate!

FT and DFT (3)

• Another problem: convolution introduces noise folding in windowed spectrum:

(a) Convolution process implied by truncation of the ideal impulse response. (b) Typical approximation resulting from windowing the ideal impulse response.

Windowing

• General window (T=1):

$$W(f) = \sum_{n=0}^{N-1} w(n) \cdot e^{-j2\pi fn}$$

• Common windows:

Windowing

• $\Delta\Sigma$ data is (usually) not periodic

Just because the input repeats does not mean that the output does too!

- A finite-length data record = an infinite record multiplied by a *rectangular window*: w(n) = 1,0 ≤ n < N Windowing is unavoidable.
- "Multiplication in time is convolution in frequency"

N = 16

Window Properties

Window	Rectangular	- Hann [‡]	Hann ²
w(n), n = 0, 1,, N-1 (w(n) = 0 otherwise)	1	$\frac{1-\cos\frac{2\pi n}{N}}{2}$	$\left(\frac{1-\cos\frac{2\pi n}{N}}{2}\right)^2$
Number of non-zero FFT bins	1	3	5
$ w _{2}^{2} = \sum w(n)^{2}$	N	3 <i>N</i> /8	35 <i>N</i> /128
$W(0) = \sum w(n)$	N	N/2	3 <i>N</i> /8
$NBW = \frac{\ w\ _{2}^{2}}{W(0)^{2}}$	1/N	1.5/ <i>N</i>	35/18 <i>N</i>

‡. MATLAB's hanning function causes spectral leakage of tones located in FFT bins unless you add the optional argument "periodic". Use $\Delta\Sigma$ Toolbox function ds_hann.

Window Length, N

- Need to have enough in-band noise bins to
 - 1 Make the number of signal bins a small fraction of the total number of in-band bins

<20% signal bins \Rightarrow >15 in-band bins \Rightarrow N > 30 · OSR

2 Make the SNR repeatable

 $N = 30 \cdot OSR$ yields std. dev. ~1.4 dB.

- $N = 64 \cdot OSR$ yields std. dev. ~1.0 dB.
- $N = 256 \cdot OSR$ yields std. dev. ~0.5 dB.

• $N = 64 \cdot OSR$ is recommended

This is all you need to know to do SNR calculations. If you want to make spectral plots, you need to know more...

Scaling and Noise Bandwidth

- FFT scaled such that a full-scale (FS) sine wave (A = FS/2) yields a 0-dB spectral peak: $\hat{S}_{x}'(f) = \begin{vmatrix} \sum_{n=0}^{N-1} w(n) \cdot x(n) \cdot e^{-j2\pi f n} \\ \frac{1}{(FS/4)W(0)} \end{vmatrix}^{2} - |FFT|^{2}$ Sine-wave scale factor
- "Noise Floor" depends on N (!)

A sine-wave-scaled FFT is fine for showing *spectra*, but is ill-suited for displaying *spectral densities*.

• Vertical axis is really "dBFS/NBW," where NBW is the bandwidth over which the noise power has been integrated

Think of the spectrum as representing the amount of power in a frequency band whose width is NBW.

NBW = k/N, where k depends on the window type.

An FFT is like a Filter Bank

• The FFT can be interpreted as taking 1 sample from the outputs of N complex FIR filters:

• NBW is the effective bandwidth of these filters

Noise Bandwidth

• For a filter with frequency response W(f)

Noise Bandwidth of a Rectangular FFT

$$h_{k}(n) = \exp\left(j\frac{2\pi k}{N}n\right)$$

$$W_{k}(f) = \sum_{n=0}^{N-1} h_{k}(n) \exp\left(-j2\pi fn\right)$$

$$f_{0} = \frac{k}{N}, W_{k}(f_{0}) = \sum_{n=0}^{N-1} 1 = N$$

$$\int |W_{k}(f)|^{2} = \sum |w_{k}(n)|^{2} = N \quad \text{[Parseval]}$$

$$\cdot NBW = \frac{\int |W_{k}(f)|^{2} df}{W_{k}(f_{0})^{2}} = \frac{N}{N^{2}} = \frac{1}{N}$$

• NBW is the same for each FFT bin "filter"

Noise Bandwidth of a Hann-Windowed FFT

• Use the filter associated with FFT bin 0

 \overline{N}

 $\overline{W(0)^2}$

•
$$w(n) = \frac{1 - \cos\left(\frac{2\pi}{N}n\right)}{2} \int_{0}^{1} \int_{0}^{1}$$

Smoothed Spectrum and SNR Calculation

Quantization Noise Power = −105 + 30.5 = −74.5 dBFS
 ⇒ SQNR = −6 − (−74.5) = 68.5 dB

Manual SQNR Prediction

- The noise term is *HE*.
- The rms value of H in the band of interest, σ_H, can be evaluated using rmsGain.

• Since $\Delta = 2$ for all quantizers, $\sigma_e^2 = \frac{\Delta^2}{12} = \frac{1}{3}$.

- The in-band noise power is therefore $\frac{\sigma_H^2 \sigma_e^2}{\text{OSR}} = \frac{\sigma_H^2}{3\text{OSR}}$.
- The signal power is impossible to predict using the linear model, but is usually around -3 dBFS.

This corresponds to a power of $(nlev - 1)^2/4$.

•
$$\therefore$$
 SQNR_{peak} $\approx 10 \log_{10} \left(\frac{3(OSR)(nlev-1)^2}{4\sigma_H^2} \right) dB.$