Oversampling Converters

David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu)

slide 1 of 56

Motivation

 Popular approach for medium-to-low speed A/D and D/A applications requiring high resolution

Easier Analog

- reduced matching tolerances
- relaxed anti-aliasing specs
- relaxed smoothing filters

More Digital Signal Processing

- Needs to perform strict anti-aliasing or smoothing filtering
- Also removes shaped quantization noise and decimation (or interpolation)

slide 2 of 56

Quantization Noise

- Above model is exact
 - approx made when assumptions made about e(n)
- Often assume e(n) is white, uniformily distributed number between $\pm \Delta/2$
- Δ is difference between two quantization levels

slide 3 of 56

Quantization Noise

- White noise assumption reasonable when:
 - fine quantization levels
 - signal crosses through many levels between samples
 - sampling rate not synchronized to signal frequency
- Sample lands somewhere in quantization interval leading to random error of $\pm \Delta/2$

slide 4 of 56

Quantization Noise

- Quantization noise power shown to be $\Delta^2/12$ and is independent of sampling frequency
- If white, then spectral density of noise, $S_e(f)$, is constant.

slide 5 of 56

Oversampling Advantage

- Oversampling occurs when signal of interest is bandlimited to f_0 but we sample higher than $2f_0$
- Define oversampling-rate

$$OSR = f_s/(2f_0) \tag{1}$$

• After quantizing input signal, pass it through a brickwall digital filter with passband up to \boldsymbol{f}_0

slide 6 of 56

Oversampling Advantage

Output quantization noise after filtering is:

$$P_{e} = \int_{-f_{s}/2}^{f_{s}/2} S_{e}^{2}(f) |H(f)|^{2} df = \int_{-f_{0}}^{f_{0}} k_{x}^{2} df = \frac{\Delta^{2}}{12} \left(\frac{1}{OSR}\right)$$
(2)

- Doubling OSR reduces quantation noise power by 3dB (i.e. 0.5 bits/octave)
- Assuming peak input is a sinusoidal wave with a peak value of $2^N(\Delta/2)$ leading to $P_s = ((\Delta 2^N)/(2\sqrt{2}))^2$
- Can also find peak SNR as:

$$SNR_{max} = 10 \log\left(\frac{P_s}{P_e}\right) = 10 \log\left(\frac{3}{2}2^{2N}\right) + 10 \log(OSR)$$
 (3)

Oversampling Advantage

Example

- A dc signal with 1V is combined with a noise signal uniformily distributed between $\pm\sqrt{3}$ giving 0 dB SNR. $\{0.94, -0.52, -0.73, 2.15, 1.91, 1.33, -0.31, 2.33\}$.
- Average of 8 samples results in 0.8875
- Signal adds linearly while noise values add in a square-root fashion — noise filtered out.

Example

- 1-bit A/D gives 6dB SNR.
- To obtain 96dB SNR requires 30 octaves of oversampling ((96-6)/3 dB/octave)
- If $f_0 = 25$ kHz, $f_s = 2^{30} \times f_0 = 54,000$ GHz!

slide 8 of 56

Advantage of 1-bit D/A Converters

- Oversampling improves SNR but not linearity
- To acheive 16-bit linear converter using a 12-bit converter, 12-bit converter must be linear to 16 bits
 - i.e. integral nonlinearity better than 1/24 LSB
- A 1-bit D/A is inherently linear
 - 1-bit D/A has only 2 output points
 - 2 points always lie on a straight line
- Can acheive better than 20 bits linearity without trimming (will likely have gain and offset error)
- Second-order effects (such as D/A memory or signaldependent reference voltages) will limit linearity.

Oversampling with Noise Shaping

Place the quantizer in a feedback loop

Delta-Sigma Modulator

Linear model

slide 10 of 56

Oversampling with Noise Shaping

Shapes quantization noise away from signal band of interest

Signal and Noise Transfer-Functions

$$S_{TF}(z) \equiv \frac{Y(z)}{U(z)} = \frac{H(z)}{1 + H(z)} \tag{4}$$

$$N_{TF}(z) \equiv \frac{Y(z)}{E(z)} = \frac{1}{1 + H(z)}$$
 (5)

$$Y(z) = S_{TF}(z)U(z) + N_{TF}(z)E(z)$$
 (6)

- Choose H(z) to be large over 0 to f_0
- Resulting quantization noise near 0 where H(z) large
- Signal transfer-function near 1 where H(z) large

Oversampling with Noise Shaping

- Input signal is limited to range of quantizer output when H(z) large
- For 1-bit quantizers, input often limited to 1/4 quantizer outputs
- Out-of-band signals can be larger when H(z) small
- Stability of modulator can be an issue (particularily for higher-orders of H(z)
- Stability defined as when input to quantizer becomes so large that quantization error greater than $\pm \Delta/2$ said to "overload the quantizer"

First-Order Noise Shaping

• Choose H(z) to be a discrete-time integrator

$$H(z) = \frac{1}{z - 1} \tag{7}$$

- If stable, average input of integrator must be zero
- Average value of u(n) must equal average of y(n)

slide 13 of 56

Example

• The output sequence and state values when a dc input, u(n), of 1/3 is applied to a 1'st order modulator with a two-level quantizer of ± 1.0 . Initial state for x(n) is 0.1.

n	x(n)	x(n + 1)	y(n)	e(n)
0	0.1	-0.5667	1.0	0.9
1	-0.5667	0.7667	-1.0	-0.4333
2	0.7667	0.1	1.0	0.2333
3	0.1	-0.5667	1.0	0.9
4	-0.5667	0.7667	-1.0	-0.4333
5	• • •	• • •	• • •	• • •

- Average of y(n) is 1/3 as expected
- Periodic quantization noise in this case

slide 14 of 56

Transfer-Functions

Signal and Noise Transfer-Functions

$$S_{TF}(z) = \frac{Y(z)}{U(z)} = \frac{1/(z-1)}{1+1/(z-1)} = z^{-1}$$
 (8)

$$N_{TF}(z) = \frac{Y(z)}{E(z)} = \frac{1}{1 + 1/(z - 1)} = (1 - z^{-1})$$
 (9)

 Noise transfer-function is a discrete-time differentiator (i.e. a highpass filter)

$$N_{TF}(f) = 1 - e^{-j2\pi f/f_s} = \frac{e^{j\pi f/f_s} - e^{-j\pi f/f_s}}{2j} \times 2j \times e^{-j\pi f/f_s}$$

$$= \sin\left(\frac{\pi f}{f_s}\right) \times 2j \times e^{-j\pi f/f_s}$$
(10)

Signal to Noise Ratio

Magnitude of noise transfer-function

$$\left|N_{TF}(f)\right| = 2\sin\left(\frac{\pi f}{f_s}\right) \tag{11}$$

Quantization noise power

$$P_{e} = \int_{-f_{0}}^{f_{0}} S_{e}^{2}(f) |N_{TF}(f)|^{2} df = \int_{-f_{0}}^{f_{0}} \left(\frac{\Delta^{2}}{12}\right) \frac{1}{f_{s}} \left[2 \sin\left(\frac{\pi f}{f_{s}}\right)\right]^{2} df \quad (12)$$

• Assuming $f_0 \ll f_s$ (i.e., OSR >> 1)

$$P_{e} \cong \left(\frac{\Delta^{2}}{12}\right)\left(\frac{\pi^{2}}{3}\right)\left(\frac{2f_{0}}{f_{s}}\right)^{3} = \frac{\Delta^{2}\pi^{2}}{36}\left(\frac{1}{OSR}\right)^{3}$$
 (13)

Max SNR

- Assuming peak input is a sinusoidal wave with a peak value of $2^N(\Delta/2)$ leading to $P_s = ((\Delta 2^N)/(2\sqrt{2}))^2$
- Can find peak SNR as:

$$SNR_{max} = 10 \log \left(\frac{P_s}{P_e}\right)$$

$$= 10 \log \left(\frac{3}{2}2^{2N}\right) + 10 \log \left[\frac{3}{\pi^2}(OSR)^3\right]$$
(14)

or, equivalently,

$$SNR_{max} = 6.02N + 1.76 - 5.17 + 30 \log(OSR)$$
 (15)

 Doubling OSR gives an SNR improvement 9 dB or, equivalently, a benefit of 1.5 bits/octave

slide 17 of 56

SC Implementation

slide 18 of 56

Second-Order Noise Shaping

$$S_{TF}(f) = z^{-1} \tag{16}$$

$$N_{TF}(f) = (1 - z^{-1})^2 (17)$$

$$SNR_{max} = 6.02N + 1.76 - 12.9 + 50\log(OSR)$$
 (18)

• Doubling *OSR* improves SNR by 15 dB (i.e., a benefit of 2.5 bits/octave)

slide 19 of 56

Noise Transfer-Function Curves

- Out-of-band noise increases for high-order modulators
- Out-of-band noise peak controlled by poles of noise transfer-function
- Can also spread zeros over band-of-interest

slide 20 of 56

Example

• 90 dB SNR improvement from A/D with $f_0 = 25 \text{ kHz}$

Oversampling with no noise shaping

• From before, straight oversampling requires a sampling rate of 54,000 GHz.

First-Order Noise Shaping

• Lose 5 dB (see (15)), require 95 dB divided by 9 dB/ octave, or 10.56 octaves — $f_s=2^{10.56}\times 2f_0\cong 75\,\mathrm{MHz}$

Second-Order Noise Shaping

• Lose 13 dB, required 103 dB divided by 15 dB/ octave, $f_s = 5.8$ MHz (does not account for reduced input range needed for stability).

slide 21 of 56

Quantization Noise Power of 1-bit Modulators

- If output of 1-bit mod is ± 1 , total power of output signal, y(n), is normalized power of 1 watt.
- Signal level often limited to well below ±1 level in higher-order modulators to maintain stability
- For example, if maximum peak level is ±0.25, max signal power is 62.5 mW.
- Max signal is approx 12 dB below quantization noise (but most noise in different frequency region)
- Quantization filter must have dynamic range capable of handling full power of y(n) at input.
- Easy for A/D digital filter
- More difficult for D/A analog filter

Zeros of NTF are poles of H(z)

• Write H(z) as

$$H(z) = \frac{N(z)}{D(z)} \tag{19}$$

NTF is given by:

NTF(z) =
$$\frac{1}{1 + H(z)} = \frac{D(z)}{D(z) + N(z)}$$
 (20)

 If poles of H(z) are well-defined then so are zeros of NTF

Error-Feedback Structure

Alternate structure to interpolative

- Signal transfer-function equals unity while noise transfer-function equals G(z)
- First element of G(z) equals 1 for no delay free loops
- First-order system $G(z) 1 = -z^{-1}$
- More sensitive to coefficient mismatches

Architecture of Delta-Sigma A/D Converters

slide 25 of 56

Time

Frequency

Architecture of Delta-Sigma A/D Converters

Frequency

University of Toronto

slide 26 of 56

Architecture of Delta-Sigma A/D Converters

- Relaxes analog anti-aliasing filter
- Strict anti-aliasing done in digital domain
- Must also remove quantization noise before downsampling (or aliasing occurs)
- Commonly done with a multi-stage system
- Linearity of D/A in modulator important results in overall nonlinearity
- Linearity of A/D in modulator unimportant (effects reduced by high gain in feedback of modulator)

Architecture of Delta-Sigma D/A Converters

Time

Frequency

University of Toronto

slide 28 of 56

Architecture of Delta-Sigma D/A Converters

slide 29 of 56

Architecture of Delta-Sigma D/A Converters

- Relaxes analog smoothing filter (many multibit D/A converters are oversampled without noise shaping)
- Smoothing filter of first few images done in digital (then often below quantization noise)
- Order of lowpass filter should be at least one order higher than that of modulator
- Results in noise dropping off (rather than flat)
- Analog filter must attenuate quantization noise and should not modulate noise back to low freq — strong motivation to use multibit quantizers

Multi-Stage Digital Decimation

- Sinc filter removes much of quantization noise
- Following filter(s) anti-aliasing filter and noise

Sinc Filter

• sinc^{L+1} is a cascade of L+1 averaging filters

Averaging filter

$$T_{avg}(z) = \frac{Y(z)}{U(z)} = \frac{1}{M} \sum_{i=0}^{M-1} z^{-i}$$
 (21)

- M is integer ratio of $f_s/(8f_0)$
- It is a linear-phase filter (symmetric coefficients)
- If *M* is power of 2, easy division (shift left)
- Can not do all decimation filtering here since not sharp enough cutoff

Sinc Filter

• Consider $x_{in}(n) = \{1, 1, -1, 1, 1, -1, ...\}$ applied to M = 4 averaging filters in cascade

- $x_1(n) = \{0.5, 0.5, 0.0, 0.5, 0.5, 0.0, \dots\}$
- $x_2(n) = \{0.38, 0.38, 0.25, 0.38, 0.38, 0.25, \dots\}$
- $x_3(n) = \{0.34, 0.34, 0.31, 0.34, 0.34, 0.31, \dots\}$
- Converging to sequence of all 1/3 as expected

Sinc Filter Response

Can rewrite averaging filter in recursive form as

$$T_{avg}(z) = \frac{Y(z)}{U(z)} = \frac{1}{M} \left(\frac{1 - z^{-M}}{1 - z^{-1}} \right)$$
 (22)

and a cascade of L+1 averaging filters results in

$$T_{\text{sinc}}(z) = \frac{1}{M^{L+1}} \left(\frac{1-z^{-M}}{1-z^{-1}} \right)^{L+1}$$
 (23)

• Use L+1 cascade to roll off quantization noise faster than it rises in L'th order modulator

Sinc Filter Frequency Response

• Let $z = e^{j\omega}$

$$T_{avg}(e^{j\omega}) = \frac{\operatorname{sinc}\left(\frac{\omega M}{2}\right)}{\operatorname{sinc}\left(\frac{\omega}{2}\right)}$$
(24)

where $sinc(x) \equiv sin(x)/x$

slide 35 of 56

Sinc Implementation

$$T_{\text{sinc}}(z) = \left(\frac{1}{1-z^{-1}}\right)^{L+1} (1-z^{M})^{L+1} \frac{1}{M^{L+1}}$$
 (25)

 If 2's complement arithmetic used, wrap-around okay since followed by differentiators

slide 36 of 56

Higher-Order Modulators

 An L'th order modulator improves SNR by 6L+3 dB/octave

Interpolative Architecture

u(n)

- Can spread zeros over freq of interest using resonators with \boldsymbol{f}_1 and \boldsymbol{f}_2
- Need to worry about stability (more later)

slide 37 of 56

MASH Architecture

- Multi-stAge noise SHaping MASH
- Use multiple lower order modulators and combine outputs to cancel noise of first stages

slide 38 of 56

MASH Architecture

Output found to be:

$$Y(z) = z^{-2}U(z) - (1 - z^{-1})^{2}E_{2}(z)$$
(26)

Multibit Output

- Output is a 4-level signal though only single-bit D/A's
 - if D/A application, then linear 4-level D/A needed
 - if A/D, slightly more complex decimation

A/D Application

- Mismatch between analog and digital can cause first-order noise, e_1 , to leak through to output
- Choose first stage as higher-order (say 2'nd order)

Bandpass Oversampling Converters

- Choose H(z) to have high gain near freq f_c
- NTF shapes quantization noise to be small near f_c
- OSR is ratio of sampling-rate to twice bandwidth

 — not related to center frequency

Bandpass Oversampling Converters

- Above H(z) has poles at $\pm j$ (which are zeros of NTF)
 - H(z) is a resonator with infinite gain at $f_s/4$

$$-H(z) = z/(z^2+1)$$

- Note one zero at +j and one zero at -j
 - similar to lowpass first-order modulator
 - only 9 dB/octave
- For 15 dB/octave, need 4'th order BP modulator

slide 41 of 56

Modulator Stability

- Since feedback involved, stability is an issue
- Considered stable if quantizer input does not overload quantizer
- Non-trivial to analyze due to quantizer
- There are rigorous tests to guarantee stability but they are too conservative
- For a 1-bit quantizer, heuristic test is:

$$\left| N_{TF}(e^{j\omega}) \right| \le 1.5 \quad \text{for } 0 \le \omega \le \pi$$
 (27)

- Peak of NTF should be less than 1.5
- Can be made more stable by placing poles of NTF closer to its zeros
- Dynamic range suffers since less noise power pushed out-of-band

slide 42 of 56

Modulator Stability

Stability Detection

- Might look at input to quantizer
- Might look for long strings of 1s or 0s at comp output

When instability detected ...

- reset integrators
- Damp some integrators to force more stable

slide 43 of 56

Linearity of Two-Level Converters

- For high-linearity, levels should NOT be a function of input signal
 - power supply variation might cause symptom
- Also need to be memoryless

 switched-capacitor circuits are inherently memoryless if enough settling-time allowed
- Above linearity issues also applicable to multi-level
- A nonreturn-to-zero is NOT memoryless
- Return-to-zero is memoryless if enough settling time
- Important for continuous-time D/A

Linearity of Two-Level Converters

slide 45 of 56

Idle Tones

1/3 into 1'st order modulator results in output

$$y(n) = \{1, 1, -1, 1, 1, -1, 1, 1, \dots\}$$
 (28)

- Fortunately, tone is out-of-band at $f_s/3$
- (1/3 + 1/24) = 3/8 into modulator has tone at $f_s/16$
- Similar examples can cause tones in band-of-interest and are not filtered out say $f_s/256$
- Also true for higher-order modulators
- Human hearing can detect tones below noise floor
- Tones might not lie at single frequency but be short term periodic patterns.
 - could be a tone varying between 900 and 1100 Hz varying in a random-like pattern

slide 46 of 56

Dithering

Dither signal

- Add pseudo-random signal into modulator to break up idle tones (not just mask them)
- If added before quantizer, it is noise shaped and large dither can be added.
 - A/D: few bit D/A converter needed
 - D/A: a few bit adder needed
- Might affect modulator stability

Opamp Gain

• Finite opamp gain, A, moves pole at z = 1 left by 1/A

- Flattens out noise at low frequency
 only 3 dB/octave for high OSR
- Typically, require

$$A > OSR/\pi \tag{29}$$

slide 48 of 56

Multi-bit Oversampled Converters

- A multi-bit DAC has many advantages
 - more stable higher peak |NTF|
 - higher input range
 - less quantization noise introduced
 - less idle tones (perhaps no dithering needed)
- Need highly linear multi-bit D/A converters

Example

 A 4-bit DAC has 18 dB less quantization noise, up to 12 dB higher input range — perhaps 30 dB improved SNR over 1-bit

Large Advantage in DAC Application

Less quantization noise — easier analog lowpass filter

slide 49 of 56

Multi-bit Oversampled Converters

- Randomize thermometer code
- Can also "shape" nonlinearities

• All NTF zeros at z = 1

$$NTF(z) = \frac{(z-1)^3}{D(z)}$$
(30)

- Find D(z) such that $\left| NTF(e^{j\omega}) \right| < 1.4$
- Use Matlab to find a Butterworth highpass filter with peak gain near 1.4
- If passband edge at $f_s/20$ then peak gain = 1.37

$$NTF(z) = \frac{(z-1)^3}{z^3 - 2.3741z^2 + 1.9294z - 0.5321}$$
(31)

• Find H(z) as

$$H(z) = \frac{1 - NTF(z)}{NTF(z)}$$
(32)

$$H(z) = \frac{0.6259z^2 - 1.0706z + 0.4679}{(z-1)^3}$$
 (33)

Choosing a cascade of integrator structure

- α_i coefficients included for dynamic-range scaling
 - initially $\alpha_2 = \alpha_3 = 1$
 - last term, α_1 , initially set to β_1 so input is stable for a reasonable input range
- Initial β_i found by deriving transfer function from 1-bit D/A output to V_3 and equating to -H(z)

slide 53 of 56

$$H(z) = \frac{z^2(\beta_1 + \beta_2 + \beta_3) - z(\beta_2 + 2\beta_3) + \beta_3}{(z-1)^3}$$
(34)

• Equating (33) and (34) results in

$$\alpha_1 = 0.0232, \quad \alpha_2 = 1.0, \quad \alpha_3 = 1.0$$
 $\beta_1 = 0.0232, \quad \beta_2 = 0.1348, \quad \beta_3 = 0.4679$
(35)

Dynamic Range Scaling

- Apply sinusoidal input signal with peak value of 0.7 and frequency $\pi/256$ rad/sample
- Simulation shows max values at nodes V_1 , V_2 , V_3 of 0.1256, 0.5108, and 1.004
- Can scale node V_1 by k_1 by multiplying α_1 and β_1 by k_1 and dividing α_2 by k_1
- Can scale node V_2 by k_2 by multiplying α_2/k_1 and β_2 by k_2 and dividing α_3 by k_2

$$\alpha'_{1} = 0.1847, \quad \alpha'_{2} = 0.2459, \quad \alpha'_{3} = 0.5108$$

$$\beta'_{1} = 0.1847, \quad \beta'_{2} = 0.2639, \quad \beta'_{3} = 0.4679$$
(36)

slide 55 of 56

slide 56 of 56