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Motiv ation

* Popular approach for medium-to-low speed A/D and
D/A applications requiring high resolution

Easier Analog
* reduced matching tolerances
* relaxed anti-aliasing specs
* relaxed smoothing filters

Mor e Digital Signal Processing

 Needs to perform strict anti-aliasing or smoothing
filtering

* Also removes shaped guantization noise and
decimation (or interpolation)
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x(n)

Quantization Noise

e(n)

y(n)
> R o X(n) + » y(n)

e(n) = y(n)—x(n)

Quantizer Model

 Above model is exact
— approx made when assumptions made about e(n)

e Often assume &(n) is white, uniformily distributed
number between £A/?2

o A Is difference between two quantization levels
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Quantization Noise
T

-

o
>

time
\\\’
 White noise assumption reasonable when:
— fine quantization levels
— signal crosses through many levels between
samples

— sampling rate not synchronized to signal
frequency

« Sample lands somewhere in quantization interval
leading to random error of £A/2

RERRRRRRRRRERN
N

University of Toronto slide 4 of 56

© D.A. Johns, K. Martin, 1997




Quantization Noise

e Quantization noise power shown to be A°/12 and is
independent of sampling frequency

* If white, then spectral density of noise, S(f), Is
constant.
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Oversampling Ad vantage

e Oversampling occurs when signal of interest is
bandlimited to f, but we sample higher than 2f,

e Define oversampling-rate
OSR = f/(2f) (1)

« After quantizing input signal, pass it through a
brickwall digital filter with passband up to f,

y4(n)
u(n) ——— J_,-l‘r Hf) |— Yo(n)

N-bit quantizer
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Oversampling Ad vantage

Output quantization noise after filtering is:

= Lt 2%

2
LSNIHMIPdf = [0t = THEEE o

12LOSR

Doubling OSR reduces guantation noise power by

3dB (i.e. 0.5 bits/octave)

Assuming peak input is a sinusoidal wave with a peak
2
value of 2" (A/2) leading to P, = ((A2")/(24/2))

Can also find peak SNR as:

SNR__. = 10 IongSD: 10 log

University of Toronto
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+ 10log(OSR  (3)
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Oversampling Ad vantage

Example

e A dc signal with 1V is combined with a noise signal

uniformily distributed between *./3 giving 0 dB SNR.
—{0.94, -0.52, -0.73, 2.15, 1.91, 1.33, —0.31, 2.33}.

* Average of 8 samples results in 0.8875

e Signal adds linearly while noise values add in a
square-root fashion — noise filtered out.

Example

e 1-bit A/D gives 6dB SNR.

* To obtain 96dB SNR requires 30 octaves of
oversampling ( (96-6)/3 dB/octave )

e Iff, = 25kHz, f, = 2°°x f, = 54, 000 GHz !
%
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Advantage of 1-bit D/A Con verters

Oversampling improves SNR but not linearity

To acheive 16-bit linear converter using a 12-bit
converter, 12-bit converter must be linear to 16 bits

— l.e. integral nonlinearity better than 1/ 2" LSB

A 1-bit D/A is inherently linear
— 1-bit D/A has only 2 output points
— 2 points always lie on a straight line

Can acheive better than 20 bits linearity without
trimming (will likely have gain and offset error)

Second-order effects (such as D/A memory or signal-
dependent reference voltages) will limit linearity.
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Oversampling with Noise Shaping

e Place the quantizer in a feedback loop

x(n)
u(n) 4,6_)_’ H(z) : 4|_|_|J7 _y()

Quantizer

Delta-Sigma Modulator

e(n)

™ (n)
u(n) % H(z) (+) , Y

Linear model

University of Toronto
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Oversampling with Noise Shaping

e Shapes quantization noise away from signal band of
Interest

Signal and Noise Tansfer-Functions
_Y?2 _ _H@
S =03 = TR
Y@ _ _ 1
Nre@=E3 T THE
Y(2 = Sp(9U(2) + Ntp(2) E(2 (6)

» Choose H(2) to be large over 0 to f,

(4)

(5)

e Resulting quantization noise near O where H(2) large
o Signal transfer-function near 1 where H(2) large
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Oversampling with Noise Shaping
Input signal is limited to range of quantizer output
when H(z) large

For 1-bit quantizers, input often limited to 1/4
guantizer outputs

Out-of-band signals can be larger when H(z) small

Stability of modulator can be an issue (particularily
for higher-orders of H(2)

Stability defined as when input to quantizer becomes

so large that quantization error greater than A/ 2
— said to “overload the quantizer”
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« Choose H(2) to be a discrete-time integrator
1

z—1

(0 4@_%} : ff

First-Order Noise Shaping

H(2) =

x(n)

Z

-1

(7)

y(n)

Quantizer

 |f stable, average input of integrator must be zero

e Average value of u(n) must equal average of y(n)

University of Toronto
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Example

 The output sequence and state values when a dc
Input, u(n), of 1/ 3 is applied to a 1'st order modulator

with a two-level quantizer of £1.0. Initial state for x(n)
s 0.1.

n x(n) x(n + 1) y(n) e(n)

0 0.1 —0.5667 1.0 0.9

1 —0.5667 0.7667 -1.0 —0.4333
2 0.7667 0.1 1.0 0.2333
3 0.1 —0.5667 1.0 0.9

4 —0.5667 0.7667 -1.0 —0.4333

« Average of y(n) is 1/ 3 as expected
* Periodic quantization noise in this case
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Transf er-Functions
Signal and Noise Tansfer-Functions

Y@ _ U(z-1) _ 4
S = 0o T T vz=1) 2 ©)
Nee@ = 22 = L =177 ©)

E(2 1+ 1/(z-1)

 Noise transfer-function is a discrete-time
differentiator (i.e. a highpass filter)

jf/f, —jmt/f

—j2rf/ f — . —jrif / f
Npe(f) = 1-e ' ° = S——=2 x2jxe
| J (10)
G | S U L 2
= Sme e 2] xe
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Signal to Noise Ratio

Magnitude of noise transferfunction

ot
Nre(f)] = 2sin5 11
S
Quantization noise paver
2 2
_ o I~ 2 o A ELE
- (F)|N (D)2 df = [2sm —} df 2
J_t,% IN7e(f)] I_f mlsz O 0

* Assuming f, << f¢ (i.e., OSR>>1)

P, D@ﬂrﬂﬂr

= [ 1
L2003 L D 36 LOS

University of Toronto
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Max SNR
« Assuming peak input is a sinusoidal wave with a peak

N : _ N 2
value of 2" (A/2) leading to P, = ((A27)/(24/2))
e Can find peak SNR as:

SNR_ . = 10|ogdDSD

= 10log %22'\' L 10Iog[

1+ 1009 5(0SR’|

" (14)

or, equivalently,
SNR, ,x = 6.02N +1.76— 5.17+ 30log(OSR (15)

 Doubling OSR gives an SNR improvement 9 dB or,
equivalently, a benefit of 1.5 bits/octave
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SC Implementation

Quantizer
3 y(n)
_
1-bit D/Aj¢
Analog : Digital
C
I
Vv $1 C o l Comparator
in °—— |—‘—I -
cpz\j_1 (] t o\
L |1 b _ out
o) | ]
2:1°C Latch on @, falling
Vref/Zo \j_“_ 2
?q ((Pz) < :
(07): (@) = V¢ low
iﬁ
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Second-Or der Noise Shaping

u(n) —(H—(+) (£ 7 J_,—'_r > y(n)
_ [ T -
Quantizer
—1
Sre(f) = 2 (16)
1.2
Ne(f) = (1-27) (17)
SNR, ., = 6.02N +1.76— 12.9+ 50log(OSR (18)
e Doubling OSRimproves SNR by 15 dB
(i.e., a benefit of 2.5 bits/octave)
& slide 19 of 56
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»

Noise Transf er-Function Cur ves

Second-order

A

N ()
TF ‘ First-order

No noise shaping

- f

s :
2

e Out-of-band noise increases for high-order
modulators

e Out-of-band noise peak controlled by poles of noise
transfer-function

e Can also spread zeros over band-of-interest
5%%
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Example
* 90 dB SNR improvement from A/D with f, = 25 kHz

Oversampling with no noise shaping

 From before, straight oversampling requires a
sampling rate of 54,000GHz.

First-Order Noise Shaping

* Lose 5 dB (see (15)), require 95 dB divided by 9 dB/
octave, or 10.56 octaves — f_ = 2 2f, U 75MHz

Second-Order Noise Shaping

e Lose 13 dB, required 103 dB divided by 15 dB/
octave, f, = 5.8 MHz (does not account for reduced

Input range needed for stability).
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Quantization Noise P _ower of 1-bit Modulator s

 If output of 1-bit mod is £1, total power of output
signal, y(n), is normalized power of 1 watt.

« Signal level often limited to well below =1 level Iin
higher-order modulators to maintain stability

e For example, if maximum peak level is £0.25, max
signal power is 62.5 mW.

 Max signal is approx 12 dB below quantization noise
(but most noise in different frequency region)

e Quantization filter must have dynamic range capable
of handling full power of y(n) at input.

« Easy for A/D — digital filter
« More difficult for D/A — analog filter
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Zeros of NTF are poles of H(z2)
x(n)

u(n) H(z) : 4,_,_,—l’ . y(n)
B Quantizer

 Write H(2) as

N(2)

H(2) = DE)

(19)

« NTF is given by:
1 _ D(2)
1+H(EZ) D@ +N(2

 |f poles of H(z) are well-defined then so are zeros of
NTF

NTF(2) = (20)
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Error-Feedbac k Structure

Alternate structure to interpolative

u(n)

x(n) y(n)

e

G(z) -1, | e(n)

Signal transfer-function equals unity while noise
transfer-function equals G(2

First element of G(2 equals 1 for no delay free loops

First-order system — G(2 -1 = —z

1

More sensitive to coefficient mismatches
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Architecture of Delta-Sigma A/D Con verters

Xi® X0 Xsh®  Xgsm®™® Xpt Xg(n)
Anti- Sample- AS E Digital :
—_ a“aS'ng > and' > ' > Iow_pass > l OSR M
: Mod ; _ :
filter hold | fg fq 5 filter fg i 21,
: : Decimation filter :
Analog ;
: Digital
» Xo() X<p(D) /%XC(f)
m g I\, ¥
i
I f /\./—\ =f
f0 fS
Time Frequency
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Architecture of Delta-Sigma A/D Con verters

. Xgsm( = +1.000000 ...
%WWWM
N le(n)_
i,
123 I‘HHHHH
L %)
L
Time\ .
.
dv

University of Toronto

dem(w)
— i > (D
2Trf0/fS 2T
N\ "
M
27 /f 2T

Mﬁmmmmm@

T 2T 411 61T 81t 10t 121t

Frequency
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Architecture of Delta-Sigma A/D Con verters

 Relaxes analog anti-aliasing filter
« Strict anti-aliasing done in digital domain

 Must also remove guantization noise before
downsampling (or aliasing occurs)

« Commonly done with a multi-stage system

e Linearity of D/A in modulator important — results in
overall nonlinearity

e Linearity of A/D in modulator unimportant (effects
reduced by high gain in feedback of modulator)
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Architecture of Delta-Sigma D/A Con verters

Interpolation AS 1-bit Analog
- I O S R > (lOW'paSS) > Mod > > |OW'paSS L,
2o f fiter | f ¢ | DA filter
S S S
f . ,
OSR= > Digital 5 Analog
2 f0 ;

Mﬁmmmmm

T 2T 4711 6Tt 8t 1071t 12T[

A

(2Trf0)/f

Time Frequency
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Architecture of Delta-Sigma D/A Con verters

|HHH S ()
e A .

) (2mfg)/ T 2
Xgsm( (t
dsm _/?a i dem(oo)
nlt I T I #(}.)
> (zmo)/fs 210

p X(0) . > f

////ﬁ\\\\ X () :
\/m

Time Frequency f
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Architecture of Delta-Sigma D/A Con verters

 Relaxes analog smoothing filter (many multibit D/A
converters are oversampled without noise shaping)

« Smoothing filter of first few images done in digital
(then often below quantization noise)

* Order of lowpass filter should be at least one order
higher than that of modulator

* Results in noise dropping off (rather than flat)

* Analog filter must attenuate quantization noise and
should not modulate noise back to low freq — strong
motivation to use multibit quantizers
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Multi-Sta ge Digital Decimation
Rate = fg Rate = 8f

Rate = 2f

0 0

L th-order

A2 T . (z
modulator S'nc( )

A 4
A 4

CL+1 -
Sinc~ " “FIR filter IR filter

Rate = fs Rate = 8f Rate = 4f., Rate = 2f

0 0 0 Rate = 2f

0

L th-order

modulator

AY T

A 4

A 4

A 4

A 4

sinc(® H, (@) ] Hy(@) [ Ha(2) ——

Halfband FIR filters Sinc compensation
FIR filter

. L+1
Sinc FIR filter

e Sinc filter removes much of quantization noise
« Following filter(s) — anti-aliasing filter and noise
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Sinc Filter

. sinc*! is a cascade of L+1 averaging filters
Averaging filter

Y 1 M=
Tavd? = u((;)) Mg (21)

M is integer ratio of f_/(8f)
It Is a linear-phase filter (symmetric coefficients)

If M Is power of 2, easy division (shift left)

Can not do all decimation filtering here since not
sharp enough cutoff
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Sinc Filter

Consider x,.(n) = {1,1,-11 1-1...} applied to
M = 4 averaging filters in cascade

Xin(”) T av?

X1(N)

-

> T aVQ(Z

X5(N)

) 3 ..
sinc filter

> Tavg(Z)

X5(N)

——>

X,(n) = {0.5 0.5 0.0 0.5 0,5 0.0, . }.
X5(n) = {0.38 0.38 0.25 0.38 0.38 0.25..}
X5(n) = {0.34 0.34 0.31 0.34 0.34 0.31. .}
Converging to sequence of all 1/3 as expected

University of Toronto
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Sinc Filter Response
« Can rewrite averaging filter in recursive form as

M
Y(3 _ 1b-z"0
Tad? = (2 M ELl —7" % )

and a cascade of L + 1 averaging filters results in
ML+l
1 %l vi Mdf

ML+1|:|1— —1D

Tsinc(z) = (23)

« Use L + 1 cascade to roll off guantization noise faster
than it rises in L‘th order modulator
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Sinc Filter Frequenc y Response

e Letz = €°
sincﬂ*)—lvID
j (12 [0
Tavd€") = (24)
sinc:mi)D
(p[]
where sindx) = sin(x)/ X
j
1 A ‘Tavg(e w)‘
\/\/\/\/.\/\/\/\/. - W
0 Tt 2TT
%ﬁ
@ slide 35 of 56

University of Toronto

© D.A. Johns, K. Martin, 1997




Sinc Implementation

1 * 1 M{L+1 1
Tsinc(d = o ﬂ- -Z") 1 (25)
_7! M
—~ ~ Out
+ >+ >+ >
T Y I
M
(Integrators) (Differentiators)
Out

—
2}

<l

) ) 1 )

f f f/M f/M

(Operate at high clock rate) (Operate at low clock rate)

e If 2's complement arithmetic used, wrap-around okay
since followed by differentiators
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Higher -Order Modulator s

e An L'th order modulator improves SNR by
6L+3 dB/octave

Inter polative Architecture

u(n)

« Can spread zeros over freq of interest using
resonators with f; and f,

 Need to worry about stability (more later)
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MASH Ar chitecture

e Multi-stAge noise SHaping - MASH

o Use multiple lower order modulators and combine
outputs to cancel noise of first stages

— -1 -1
u(n) 1 +1 z un)+(1-z )el(n)
Il g ey /
1-bit DIA |« S
+ )
(D=
. e, y(n)
1 / -
;1 [3
2 »(F)
ﬂ |_, 1 j_
1-bit D/A |«
\
o -1 -1
Analog . Digital z e (nN)+(1-z ")ey(n)
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MASH Ar chitecture
e Output found to be:

Y(2 = 2°U@ - (1-2") E42) 26
Multibit Output

e Output is a 4-level signal though only single-bit D/A’s
— if D/A application, then linear 4-level D/A needed
— if A/D, slightly more complex decimation

A/D Application

 Mismatch between analog and digital can cause first-
order noise, e, to leak through to output

e Choose first stage as higher-order (say 2’'nd order)
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Bandpass Over sampling Con verters

* Choose H(2) to have high gain near freq f

* NTF shapes quantization noise to be small near f_

« OSR is ratio of sampling-rate to twice bandwidth
— not related to center frequency

fS/4 =1 MHz
\A

S

z-plane
O—zero

/\
fS/2

dc
2t 1 X
! \

fS = 4 MHz

Lowpass 2f

fn = 10 kHz

fS
OSR = == = 200

0

0

University of Toronto

fS/4 =1 MHz

z-plane
O—Zero

/\
fS:4MHZ

fA = 10 kHZf
S

Bandpass OSR = 2, 200
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Bandpass Over sampling Con verters

. J_I_II — y(n)

Quantizer

 Above H(2) has poles at £ (which are zeros of NTF)
— H(2) is a resonator with infinite gain at f /4

_H@ = /(£ +1)

 Note one zero at +] and one zero at -
— similar to lowpass first-order modulator
— only 9 dB/octave

e For 15 dB/octave, need 4'th order BP modulator
5%%
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Modulator Stability

Since feedback involved, stability is an issue

Considered stable if quantizer input does not
overload quantizer

Non-trivial to analyze due to quantizer

There are rigorous tests to guarantee stability but
they are too conservative

For a 1-bit quantizer, heuristic test is:

N(€9) <15  foroswsm (27)

Peak of NTF should be less than 1.5

Can be made more stable by placing poles of NTF
closer to its zeros

Dynamic range suffers since less noise power
pushed out-of-band

5
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Modulator Stability

A
INTF| less stable same area under two curves
more stable
, w
2
2T[f0/fS n

Stability Detection

 Might look at input to quantizer
« Might look for long strings of 1s or Os at comp output

When instability detected ...

e reset integrators
« Damp some integrators to force more stable
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Linearity of T wo-Level Converters

For high-linearity, levels should NOT be a function of
Input signal
— power supply variation might cause symptom

Also need to be memoryless
— switched-capacitor circuits are inherently
memoryless if enough settling-time allowed

Above linearity issues also applicable to multi-level
A nonreturn-to-zero is NOT memoryless
Return-to-zero is memoryless if enough settling time
Important for continuous-time D/A

University of Toronto slide 44 of 56

© D.A. Johns, K. Martin, 1997




Linearity of T wo-Level Converters

Typical —
|deal
1 -1 -1 : 1 -1 1
Area for Aq+90, Aq Agt+ 9, Ao A+ Ag+ 5, Aq+3,
symbol
Nonreturn-to-zero (NRZ2)
Typical
|deal T
: 1 1 -1 -1 1 -1 1
Binary A R R R
AreallJ fcir A A1 0 Ag 1 0 1
symbo
Y Return-to-zero (RTZ2)
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Idle Tones
1/3 into 1’st order modulator results in output
yn ={1,1,-1,11,-111,...} (28)
Fortunately, tone is out-of-band at f./3
(1/3+1/24) = 3/8 into modulator has tone at f /16

Similar examples can cause tones in band-of-interest
and are not filtered out — say f./256

Also true for higher-order modulators
Human hearing can detect tones below noise floor

Tones might not lie at single frequency but be short
term periodic patterns.
— could be a tone varying between 900 and 1100 Hz

varying in a random-like pattern
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Dithering
Dither signal

u(n H(2) Ag— ffr * y(n)

Quantizer

e Add pseudo-random signal into modulator to break
up idle tones (not just mask them)

 |f added before quantizer, it is noise shaped and
large dither can be added.

— A/D: few bit D/A converter needed
— D/A: a few bit adder needed

« Might affect modulator stability
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Opamp Gain
e Finite opamp gain, A, moves poleatz = 1 leftby 1/A

z-plane

O —Zero0 s
INTF|

/ -
N\
low opamp gain
1A | pamp g
— (0))
2Tl'f0/fs 211

« Flattens out noise at low frequency
— only 3 dB/octave for high OSR

« Typically, require
A>0OSRT™T (29)
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Multi-bit Over sampled Con verters

o A multi-bit DAC has many advantages

— more stable - higher peak |[NTF|

— higher input range

— less quantization noise introduced

— less idle tones (perhaps no dithering needed)

 Need highly linear multi-bit D/A converters
Example

* A 4-bit DAC has 18 dB less quantization noise, up to
12 dB higher input range — perhaps 30 dB improved
SNR over 1-bit

Large Advantage in DAC Application

e Less guantization noise — easier analog lowpass
filter
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Multi-bit Over sampled Con verters
> > C
> > C
b — % 1 8 —{ c
b : g N\
©
SN > © > |
2 § S C N Analog
b3 &L’ R é) o 7 output
2 =
g > LI? > C ‘
g
= > » C
> > C

« Randomize thermometer code
e Can also “shape” nonlinearities
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Third-Order A/D Design Example
All NTF zerosatz = 1

_(z=1)°
" D(2)

Find D(2) such that [NTF(€%)| < 1.4

Use Matlab to find a Butterworth highpass filter with
peak gain near 1.4

If passband edge at f./20 then peak gain = 1.37

NTF(2 (30)

NTH2 =

3
z—1
: (z-1) -

7> —2.374%° + 1.9294 — 0.5321
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Third-Order A/D Design Example

W=T12

z-plane

j
Three zeros a® = 0
-1 s\

W= . Butterworth poles

 Find H(2) as

H(z) =

_1-NTF(2
H(2) = =7F 2 (32)
0.625%° — 1.0706& + 0.4679 -
(z-1)3
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Third-Order A/D Design Example

e Choosing a cascade of integrator structure
aq V1 as V2 05 V3 Quantizer

D (D & S Ly
u(n) ¥ Z_l j _x Z_l } _ E a

By B, oo

1-bit D/A ¢

Analog | Digital
 a; coefficients included for dynamic-range scaling
—initially a, = a5 =1
— last term, a, initially set to 3; so input is stable for
a reasonable input range

* Initial 3; found by deriving transfer function from 1-bit
D/A output to V; and equating to —H(2)

ale
P o

Bl
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Third-Order A/D Design Example
2°(B, + By + Bs) — 2(B, + 2B3) + P

H(z) = 34
(2) (2= 1) (34)
e Equating (33) and (34) results In
a, =0.0232 a,=10 a;=1.0
(35)

B,=0.0232 PB,=0.1348 P, = 0.4679
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Third-Order A/D Design Example
Dynamic Range Scaling

* Apply sinusoidal input signal with peak value of 0.7
and frequency 1 256 rad/sample

« Simulation shows max values at nodes V,, V,, V; of
0.1256, 0.5108, and 1.004

« Can scale node V,; by k; by multiplying a, and 3; by
kK, and dividing a, by k;
« Can scale node V, by k, by multiplying a,/k,; and 3,
by k, and dividing a5 by K,
a’y, =0.1847 a',=0.2459 a'; = 0.5108

36
B';, =0.1847 PB',=0.2639 PB'; = 0.4679 <9
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Third-Order A/D Design Example

+Vpac
@,
.
®, }
ik
1 ) Ca=1
i =f
o, \ +
JH o o
> o ’> v,
’7% + < o
®, !
L i
1 _ ) Ca=1
_T_
()
g
0,
_VDAC

o ~Vpac
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