Serial/Pipelined DACs

Gabor C. Temes

School of EECS
Oregon State University
Outline

• Serial 2C DAC
 – Operation

• Capacitor Mismatch and Mismatch Compensation
 – Capacitor mismatch
 – Mismatch compensating switching
 – Spectrum shaping
 – Radix-based digital correction

• Two-Capacitor DAC Enhancements
 – Time interleaved 2-C DACs

• Pipelined quasi-passive cyclic DAC
 – Operation
Quasi-Passive Cyclic DAC

• Operation:
 – Charge redistribution between two equal-valued capacitors
 – Serial digital input; LSB first
 – Φ_1 and Φ_2 are two non-overlapping clock phases
 – Conversion follows equation

$$V_{out} = V_{ref} \sum_{i=1}^{N} b_i 2^{-i}$$

Capacitor Mismatch

- Capacitor mismatch effects
 - Conversion accuracy limited by capacitor matching
 - Capacitor mismatch introduces nonlinearity
 - Plots show performance degradation (bottom) in SNDR and SFDR compared with output spectrum from DAC with ideal matching (top)
Mismatch Compensation (1)

• Switching techniques
 – Compensative switching
 • The roles of the two capacitor is interchangeable
 • The roles of the capacitors can be chosen on bit-wise base
 • An algorithm was developed to minimize the conversion error for any digital word
 • The switching pattern is input dependent
 • First-order error canceled for 31% of the input codes; reduced to 1/10 for 48% of the input codes

Mismatch Compensation (2)

- Switching techniques
 - Complementary switching
 - Digital word fed to 2-C DAC twice; once with normal arrangement, once with swapped roles of \(C_1 \) and \(C_2 \)
 - Output sof the two conversions are added (or averaged)
 - First-order mismatch compensated at cost of doubled conversion time

Mismatch Compensation (3)

- **Switching techniques**
 - Input-word-splitting compensative switching
 - Compensative switching [2] does not compensate for all input codes
 - Split digital input into sum of two digital codes
 - The conversion errors need to be able to be respectively compensated using compensative switching for the two new digital inputs
 - Final output is the sum of the two conversions

- Needs two sets of 2-C DACs
- Needs analog summation
- Needs sophisticated algorithm for splitting the input word

Mismatch Compensation (4)

• Switching techniques
 – Alternately complementary switching
 • Roles of C_1 and C_2 are swapped alternately in the first cycle and adopt complementary switching [3] for the second conversion cycle
 • Output of the two conversions are summed (or averaged)

 • INL improved due to cancellation of major second-order error

 – Hybrid switching
 • Averaging conversion results of complementary switching and alternately complementary switching
 • Smaller INL; fourfold conversion cycles

Mismatch Compensation (5)

• Mismatch shaping
 – Using oversampling $\Delta \Sigma$ Modulator
 • Digital state machine to control switching sequence of a symmetric two-capacitor DAC
 • Improved linearity; better shaping for higher OSR
 • Needs $2N$ clock cycles for N-bit D/A

Simulated (FFT) performance of the DAC without (a) and with (b) mismatch shaping using a second-order loop filter
Mismatch Compensation (6)

- Radix-Based Digital Correction
 - Compensation in digital domain
 - Effectively a radix-\((C_1/C_2)\) conversion
 \[V_{out} = V_{ref} \left(\frac{C_1}{C_2} \right) \sum_{i=1}^{N} b_i \left(1 + \frac{C_1}{C_2} \right)^{-i} \]
 - Assumes known mismatch \(2(C_1-C_2)/(C_1+C_2)\), or \(C_1/C_2\)
 - ADC-like algorithm predistorts digital input
 - Feeds predistorted digital words into the 2-C DAC
 - Better performance when DAC resolution is high
 - Need to find mismatch with high accuracy

DAC output spectra plots for (a) uncompensated condition, (b) alternately complementary switching, (c) radix-based algorithm and (d) radix-based algorithm with one extra bit.
Two-Capacitor DAC Variations

- **Time interleaved 2-C DAC**
 - Time interleaving 2-C blocks improves throughput speed
 - Capacitor mismatch among channels tolerable
 - Direct-charge-transfer buffer reduces power consumption

- **Pipelined quasi-passive cyclic DAC**
 - Same operation as 2-C DAC
 - Information passed on to the last capacitor and DCT output buffer

Pipelined Quasi-passive DAC

Pipelined Quasi-passive DAC

Fig. 2. System block diagram of 10-bit D/A converter.
Pipelined Quasi-passive DAC

Fig. 3. The mth stage of the converter.

Fig. 4. Unit cell of a CMOS implementation.

Fig. 7. Differential nonlinearity response.
Pipelined Quasi-passive DAC

I. CAPACITOR MISMATCHING
 SOLUTION:
 LARGE UNIT CAPACITORS
 CAREFUL LAYOUT

II. NONZERO SWITCH ON–RESISTANCE
 SOLUTION:
 LARGE TRANSISTOR SIZE

III. CLOCK FEEDTHROUGH CHARGES
 NO EFFECT ON LINEARITY (gain & offset errors only).
 Dummy switches reduce charge injection.

IV. Capacitive coupling btw. C_i & C_{i+1}: guard strips help.

V. Last switch must be "on" when output is sampled.

VI. Buffer must be $N+1$-bit linear to avoid charge injection from last switch.
References on Quasi-passive DAC

