CS 261
Data Structures

Lecture 10
Stacks, Queues, and Deques (cont.)

Encapsulation and Iterators
7/7/22, Thursday

) Oregon State

Recap: Stacks

* A linear ADT that imposes a Last In, First Out (LIFO) order on elements
* The last element inserted must be the first one to remove
* Real life examples: a stack of books, a stack of dishes, web browser’s “back”

history, “undo” operation in a text editor
e A stack ADT has two ends: top and bottom

* New elements can only be inserted at top
* Only the element at the top may be removed

* Two main operations:
* Push —inserts an element on the top
* Pop — removes the top element

Recap: Queues

* A linear ADT that imposes a First In, First Out (FIFO) order on
elements

* The first element to be removed is the first one that was placed into it
* Real life examples: a line of people waiting for check out

A Queue ADT has two ends: front and back

* Inserting elements to the back
 Removing elements from the front

* Two main operations:
* Enqueue —insert an element at the back
* Dequeue —remove an element at the front

3

Implement Queue using Dynamic Array

* An array that allows data to wrap around from the back to the front is
known as a circular buffer

* Q: How do we know which index corresponds to the back of the
gueue?

* By computing a mapping between the array’s logical indices and its physical
indices

* Logical indices — the indices relative to the start of the data
* Physical indices — the indices relative to the start of the physical array

Implement Queue using Dynamic Array

* Mapping formula: physical = start + logical;

* Since it is circular, add the following to check: start = 2 N¢— - 3
if (physical >= capacity) { ﬁ- 3, Y)

physical —-= capacity; o |/ |s]|7

} | |

* OR: physical = (start + logical) % capacity;
Py of & = (2 T2y x4 =D
* Index at which the next element will be inserted:
* Previously: array[size] — when the data starts at physical index 0
* Now: array[physical] — where physical = (start + size) % capacity

& 33484 =

5

Implement Queue using Dynamic Array

* Dynamic Array resizing for the queue implementation
* When do we need to resize?

* size >= capacity
* When resize, reindex!
* Logical index 0 €2 Physical index O

* How?
* Loop through the logical indices from 0 to size — 1

* Copy elements at each logical index in the old array to the equivalent physical
index in the new array

Implement Queue using Dynamic Array

* Visually, look like this:

start = 2

'

0 1 2 3

9I11I5I7

data

0 1 2 3 4 5 © 7
ewdata [svfofn] | | |
7

Implement Queue using Dynamic Array

* Complexity:
* Dequeue — O(1) for all best-case, worst-case, and average case

* Enqueue
* O(1) for best-case and average case
* O(n) for worst-case, when resize is needed

Deques

* A deque (double-ended queue) is a linear ADT that supports insertion
and removal at both ends

* Examples: multi-processor job scheduling

* Four primary operations:
e Add to front
* Add to back
e Remove from front
* Remove from back

*Implement Deque using Dynamic Array

* Very similar to dynamic array-based queue implementation
* Using circular buffer

 Not covered in this class

* FYI: https://www.geeksforgeeks.org/implementation-deque-using-
circular-array/

10

https://www.geeksforgeeks.org/implementation-deque-using-circular-array/

Implement Deque using Linked List

 Since a deque supports removal from both front and back, we need
to use a doubly linked list

* Allows to remove from the back and find the new back

e Use front and back sentinel in the list
» Sentinel: a special node that is never removed from the list (doesn’t store a

value) "”“’"{'Q ?
W AR v
NULL < FS [« BS > nuLL nodA TN\ V'@)Et

11 g

Implement Deque using Linked List

e Values are inserted into the list in nodes that live between the
sentinels. For example:

rront hack
sentinel entinel

NULL = FS j¢=—»| 1 || 2 || 3 |+ BS | nuLL

e Add front: insert a new node after the front sentinel

* Add back: insert a new node before the back sentinel

* Remove front: remove the node after the front sentinel
* Remove back: remove the node before the back sentinel

12

Implement Deque using Linked List

* Why do we use sentinels?

» w/o sentinels, each operation would have to implemented differently, i.e.:
* Add to the front w/o sentinels = update the head pointer upon each insertion
» Add to the back w/o sentinels = update the tail pointer upon each insertion

* w/ sentinels, both insertions (add to front and add to back) can use the exact
same mechanics

* So can both of the removal operations

13

Implement Deque using Linked List ~

* add before() — insert a new node with a given value befor
already in the list, i.e.:

volid add before (void* value, struct node*
struct node* new node = malloc(sizeof (s

new node->value = value;

new node->prev = next->prev;

next->prev->next = new node;

new_node—>next = next;

next->prev = new node;

14

Implement Deque using Linked List

* Since our list uses sentinels, then our add to front() becomes:

volid add to front (void* value)
add before (value, front sentinel->next);

J

* Qur add to back() becomes:

volid add to back(void* value) {
add before(value, back sentinel);

J

15

Implement Deque using Linked List

* Similarly, assuming our list has a remove node () function, then our
remove_front() becomes:

vold remove front () {
remove node (front sentinel->next);

}
 Our remove back() becomes:

volid remove back()
remove node (back sentinel->prev);

J

* To check if the list is empty:

if (front sentinel->next == back sentinel)

16

Implement Deque using Linked List

* Complexity:
e Add to front— O(1)
e Add to back—0(1)
 Remove front —0(1)
 Remove back — O(1)

*For all best case, worst case, and average case

17

Lecture Topics:

e Stack, Queue, and Deque
* Encapsulation and Iterators

18

Encapsulation

* Encapsulation — hide the internal details of a data type from the user of
that data type, instead exposing only a simplified interface through which
the user interacts with the data type

* User —another developer who will be using the code we’ve written

* For example, linked list implementation has hidden the details of the list
implementation behind a simplified interface.
* Only the name of linked list data type was exposed to the user (i.e., struct list)

* If the user tried to access internal fields (1ist->head) =2 error
* “dereferencing a pointer of incomplete type”

19

Why Encapsulation?

* Reduces the cognitive overhead to understand

e Cannot misuse (and possibly break) the data type
e Cannotset 1ist->head to NULL (could cause a memory leak)

* Easier to implement the data type
e Avoid tedious error checking

* Potential challenges:

 What if our user wants to iterate through each element in the collection within a
loop?
* Problem: cannot access the internals, i.e., for linked list, cannot access the head

20

Ilterator

* lterator — a data type acts as a companion to a collection and provides a
mechanism to iterate through that collection

* Implemented to have access to the internals of the collection
* Each specific kind of collection will have its own iterator data type

 Two common functions:
* next () —returns the current value, and moves the iterator to the next element

* has next () — returns true or false to indicate whether or not there is another
element afterwards

21

To use an lterator
* Assuming we have an iterator 1 ter over a collection:

while (has next(iter)) {
value = next(iter);
/* Do something with value. */

22

Linked list Iterator

* Implement an iterator for a linked list:
* In C: defined within the same file
* |n C++: using nested classes or friend

e Qur linked list iterator must have access to the internals of the linked list:

struct node {
volid* wvalue;
struct node* next;

b

struct list {
struct node* head;

by

23

Linked list Iterator

* 1. define a structure to represent the list iterator
 How to iterate? Using a pointer (i.e., curr) to represent the current node
* |nitially points to the head, and moves to the next (i.e., curr = curr -> next;)

struct list iterator ({
struct node* curr;

Yy

e 2. implement a function to create a new iterator and associate it with a list to
iterate:

struct list iterator* list iterator create(struct list* list)
struct list iterator* iter = malloc(sizeof(struct list iterator));
iter->curr = list->head;

return iter;

24

Linked list Iterator

e 3. Implement has_next()

int has next(struct list 1terator* 1iter)
return iter->curr != NULL;

}

e 4. Implement next()

vold* next (struct list i1terator* iter) {
void* value = iter->curr->value;
lter->curr = 1ter->curr->next;
return value;

}
e *5, Polish (i.e., add error checking)

25

