CS 261 Data Structures

Lecture 23 Final Review Closing Remarks 8/11/22, Thursday

1

Odds and Ends

• Assignment 5 due Friday midnight

Lecture Topics:

- Final Review
- Closing Remarks

- 8/12 Friday 3:00 3:50 pm
- Same classroom
- Close book, close notes
- No calculator allowed
- Question types: multiple choices, T/F, short answer
 - Similar to the Midterm Exam
- Bring pencil/pen, and your photo ID (student ID/driver license/passport)
- Scratch paper will be provided upon request

- Topics: Week 4-8 (lecture 12-23):
 - Binary Search
 - Binary Search Trees
 - Tree vs. Binary Tree
 - BST Operations and their complexity:
 - Finding an element
 - Inserting an element
 - Removing an element
 - Traversal
 - DFS: Pre-order vs. in-order vs. post order
 - BFS: level order

- Topics: Week 4-8 (lecture 12-23):
 - AVL Tree
 - Balance factor of a node
 - Single rotation vs. double rotation
 - Runtime complexity of AVL tree operations
 - Priority Queues
 - Array-based heap (min/max heap)
 - Operations:
 - Insert, remove
 - Percolations
 - Build a heap from an arbitrary array
 - Heapsort
 - Map and Hash table
 - Graph

			balanceFactor(N)	
			-2 (left-heavy)	2 (right-heavy)
	balanceFactor(C)	-1 (left-heavy) 0	Left-left imbalance Single rotation: right around N	Right-left imbalance Double rotation: 1. right around <i>C</i> 2. left around <i>N</i>
		1 (right-heavy)	Left-right imbalance Double rotation: 1. left around <i>C</i> 2. right around <i>N</i>	Right-right imbalance Single rotation: left around N

- Topics: Week 4-8 (lecture 12-23):
 - Map and Hash table
 - Hash functions
 - HT operations and their runtime complexity:
 - lookup
 - Insert
 - Remove
 - Resolve Hash collisions
 - Chaining
 - Open Addressing
 - Load factor
 - Tombstone

- Topics: Week 4-8 (lecture 12-23):
 - Graph
 - Representation: adjacency list vs. adjacency matrix
 - Single source reachability
 - DFS vs. BFS in graph
 - Single source lowest-cost paths
 - Dijkstra's Algorithm

Be Confident...

Now you are able to...

- Describe the properties, interfaces, and behaviors of basic abstract data types
- Read an algorithm or program code segment and analyze the time complexity.
- State the time complexity of the fundamental operations associated with a variety of data structures.
- Recall the space utilization of common data structures in terms of the long-term storage needed to maintain the structure, as well as the short-term memory requirements of fundamental operations, such as sorting.
- Design and implement general-purpose, reusable data structures that implement one or more abstractions.
- Compare and contrast the operation of common data structures in terms of time complexity, space utilization, and the abstract data types they implement.

Final Remarks...

- Thank you so much for your commitment to this course
- Future improvements?
 - MyOSU \rightarrow Student Records \rightarrow

 Select Tax Year
Tax Notification
Student Evaluation of Teaching Student Access to Student Evaluation of Teaching.
View Advanced Standing Report

- ULA position
 - Contact me! And apply through: <u>https://jobs.oregonstate.edu/postings/123195</u>

Final Remarks...

- Submit all your work by the deadline
 - Assignment 5
- Final exam tomorrow, 8/12 3:00 pm
 - Bring your photo ID
 - Practice Exams (and solutions) are posted on Canvas
- Grade disputation:
 - By 8/14 6pm