
CS 261
Data Structures

Lecture 5

Function Pointers

Dynamic Array

6/28/22, Tuesday

1

Lecture Topics:

• Function Pointers

• Dynamic Array

• Begin Linked List

2

C Basics – Function pointers

• To use this function pointer
• the calling function will need access to a function for comparing elements, i.e., integers

• This function will have to match the prototype of the function pointer argument to our sort()

• E.g.,
int compare_ints(void* a, void* b) {

int* ai = a, *bi = b; /* Cast void* back to int*. */

if (*ai < *bi)

return 0;

else

return 1;

}

• Function call will be:

sort((void**)array_of_ints, number_of_ints, compare_ints);

3

C Basics – Function pointers

• Within sort():
• Whenever we need to compare two values from the array being sorted, we can just call cmp()

if (cmp(arr[i], arr[j]) == 0) {

/* Put arr[i] before arr[j] in the sorted array. */

}

else {

/* Put arr[i] after arr[j] in the sorted array. */

}

• Demo….

4

void sort(void** arr, int n, int (*cmp)(void* a, void* b));

FYI: GDB Setup
In your home directory, type:

python /nfs/farm/classes/eecs/spring2021/cs161-001/public_html/gdb/set_up.py

• And answer ‘y’ to the question (as follows):

5

FYI: GDB Setup (cont.)
Once setup successfully, you will have a .gdb folder and a .gdbinit file under your home directory, and

you can verify it with:

• ls .gdb

• cat .gdbinit

6

FYI: Using GDB

• Compile with debugging symbols (-g flag), e.g.:
gcc -std=c99 filename.c -g -o exe_name

• Run it with GDB:
gdb ./exe_name

7

FYI: Common GDB Commands

1. break – set up break points, e.g.: b *main break 10

2. run – begin execution (until a break point)

3. print – see the values of data, e.g. print i print &ptr print &main

4. next and step – step line by line through the program

5. continue – continue until a break point OR the end of the program

6. backtrace – prints a backtrace of all stack frame (locate seg fault!!!)

7. x/100wx [address or register] – read memory
• Examine
• 100 values
• sized as word (w, 4 bytes)

• b – byte
• g – 8 bytes

• In hexadecimal (x)
• d - decimal

8

Lecture Topics:

• Function Pointers

• Dynamic Array

• Begin Linked List

9

Abstract Data Type (ADT)

• Abstract Data Type (ADT) – a mathematical model for data types

• Specifies:
• the type of data stored

• the operations supported on them

• the types of parameters of the operations.

• Why “abstract”?
• an implementation-independent view of the data type

10

Dynamic Arrays

• Elements in an array are stored in a contiguous block of memory

• Allow random access (direct access)
• i.e., time to access the 1st element = time to access the last element

• By using array subscript ([]):
int* array = malloc(1000 * sizeof(int));

array[0] = 0;

array[999] = 0;

11

Dynamic Arrays (cont.)

• Basic operations:
• get – Gets the value of the element stored at a given index in the array

• set – Sets/updates the value of the element stored at a given index in the
array

• insert – Inserts a new value into the array at a given index.
• Sometimes, dynamic array implementations limit insertion to a specific location in the

array, e.g. only at the end.

• remove – Removes an element at a given index from the array
• Sometimes, dynamic array implementations avoid moving elements up a spot by only

allowing the last element to be removed

12

Dynamic Arrays (cont.)

• Drawbacks:
• Fixed size, must be specified when the array is created

• For static array:

int array[50];

• For dynamic array:

int *array = malloc (50 * sizeof(int));

→Need to allocate more memory if we need to store more data
• How?

• Dynamic array DS doesn’t have a fixed capacity
• Has a variable size and can grow as needed

13

Dynamic Arrays (cont.)

• Need to keep track of three things:
• data – underlying data storage array

• size – number of elements currently stored in the array

• capacity – number of elements data has space for before it must be resized

• How it works?
• An array of known capacity is maintained by the dynamic array DS.

• As elements are inserted, they are simply stored in data

• If an element is inserted into the dynamic array, and there isn’t capacity for it
in the underlying data storage array (data), the capacity of the underlying
data storage array is doubled. Then the new element is inserted into this
larger data storage array.

14

Dynamic Arrays

5 8 1

15

5

5 8

5 8 1 4

5 8 1 4 9

5 8 1 4 9 0

5 8 1 4 9 0 6

5 8 1 4 9 0 6 7

5 8 4 9 0 6 7

5 8 4 9 6 7

Inserting an element into dynarray

• Case 1: if size < capacity
• At least one free spot in data

• Insert the new element

• Case 2: if size == capacity
• No free spot in data

• Step 1: allocate a new array that has twice the capacity

• Step 2: copy all elements from data to new array

• Step 3: delete the old data array

• Step 4: Insert the new element

16

5 8 1

5

5 8

5 8

5 8

Another Example

• Insert 16 to the following dynamic array:

• Step 1: allocate a new array that has twice the capacity

17

Another Example

• Insert 16 to the following dynamic array:

• Step 2: copy all elements from data to new array

18

Another Example

• Insert 16 to the following dynamic array:

• Step 3: delete the old data array and update data

19

Another Example

• Insert 16 to the following dynamic array:

• Step 4: Insert the new element
20

Lecture Topics:

• Function Pointers

• Dynamic Array

• Begin Linked List

21

Linked List

• Linear Data Structure

• Elements in a linked list are stored in nodes and chained together
• Not in contiguous memory

• Thus, no random access

• A linked list in which each node points only to the next link in the list
is known as a singly-linked list.
• E.g.:

22

struct node {

void* val;

struct node* next;

};

Linked List

• Always contains as many nodes as it has stored values
• Add an element → allocate a node, add it to the list

• Remove an element → free the node from the list

• Many forms of linked list:
• Keeps track only of the first element in the list, known as head

23

Linked List

• Many forms of linked list:
• Keeps track only of the first element in the list, known as head

• Keeps track of both the head of the list and the tail, or last element

24

Linked List

• Many forms of linked list:
• Keeps track only of the first element in the list, known as head

• Keeps track of both the head of the list and the tail, or last element

• Each node keeps track of both the next link and the previous link in the list,
known as a doubly-linked list

25

Linked List

• Many forms of linked list:
• Keeps track only of the first element in the list, known as head

• Keeps track of both the head of the list and the tail, or last element

• Each node keeps track of both the next link and the previous link in the list,
known as a doubly-linked list

• Last node points to the first node, known as circular-linked list

26

Linked List

• Many forms of linked list:
• With sentinels, which are special

nodes to designate the front/end of
the list
• E.g.: a doubly-linked list using both front

and back sentinels

27

