CS 261
Data Structures

Lecture 5
Function Pointers
Dynamic Array
6/28/22, Tuesday

) Oregon State

Lecture Topics:

* Function Pointers
* Dynamic Array
* Begin Linked List

C Basics — Function pointers

e To use this function pointer

* the calling function will need access to a function for comparing elements, i.e., integers

* This function will have to match the prototype of the function pointer argument to our sort()
* E.g,
int compare ints(void* a, void* b) {
int* ai = a, *bi = b; /* Cast void* back to int*. */
if (*ai < *bi)
return O;
else
return 1;

}

* Function call will be:

sort ((void**)array of ints, number of ints, compare ints);

C Basics — Function pointers

void sort (void** arr, int n, int (*cmp) (void* a, wvoid* b)),
* Within sort():

 Whenever we need to compare two values from the array being sorted, we can just call cmp()

if (cmp(arr[i], arr[3j]) == 0) {
/* Put arr[i] before arr[j] in the sorted array. */

}
else {
/* Put arr[i] after arr[j] in the sorted array. */

}

* Demo....

FYl: GDB Setup

In your home directory, type:

python /nfs/farm/classes/eecs/spring2021/csl161-001/public html/gdb/set up.py

« And answer ‘y’ to the question (as follows):

flipl ~ 169% python /nfs/farm/classes/eecs/spring2021/cs161-001/public_html/gdb/set_up.py
--2021-05-16 21:12:24-- http://classes.engr.oregonstate.edu/eecs/spring2021/cs161-001/gdb/gdbinit
Resolving classes.engr.oregonstate.edu (classes.engr.oregonstate.edu)... 193.40.12

Connecting to classes.engr.oregonstate.edu (classes.engr.oregonstate.edu)|128.193.40.12|:80... connec
HTTP request sent, awaiting response... 200 OK

Length: 279 [text/plain]

Saving to: ‘/nfs/stak/users/songyip/.gdb/gdbinit’

2021-05-16 21:12:24 (28.8 MB/s) - ‘/nfs/stak/users/songyip/.gdb/gdbinit’ saved [279/279]

--2021-05-16 21:12:24-- http: -

Resolving classes.engr.oregonstate.edu (

Connecting to classes.engr.oregonstate.edu (classes.engr.oregonstate.edu) |12
HTTP request sent, awaiting response... 200 OK

Length: 64591 (63K) [text/plain]

Saving to: ‘/nfs/stak/users/songyip/.gdb/gdb_dashboard.py’

2021-05-16 21:12:24 (138 MB/s) - ‘/nfs/stak/users/songyip/.gdb/gdb_dashboard.py’ saved [64591/64591]

Do you want to install peda to ~/.gdbinit (y/n) ?
y

-.-K/s

in Os

FYl: GDB Setup (cont.)

Once setup successfully, you will have a .gdb folder and a .gdbinit file under your home directory, and
you can verify it with:

« 1s .gdb flipl ~ 170% 1s .gdb
gdb_dashboard.py gdbinit

* cat .gdbinit EEETNEEEEVEERNEY SN ST bR
set auto-load safe-path /
source ~/.gdb/gdb dashboard.py
set history save
set verbose off

set print pretty on

set print array off

set print array-indexes on

set python print-stack full

python Dashboard.start()

dashboard -layout registers assembly source stack memory expressions

FYI: Using GDB

 Compile with debugging symbols (-g flag), e.g.:

gcc —-std=c99 filename.c -g -0 exe name

e Run it with GDB:

gdb ./exe name

FYI: Common GDB Commands

break —set up break points, e.g.: b *main break 10

run - begin execution (until a break point)

print —seethevaluesofdata, e.g. print i print &ptr print &main
next and step -—step line by line through the program

continue - continue until a break point OR the end of the program

backtrace - printsa backtrace of all stack frame (locate seg fault!!!)

x/100wx [address or register] — read memory
* Examine
e 100 values
* sized as word (w, 4 bytes)
* b-byte
« g—8bytes
* In hexadecimal (x)
* d-decimal

N ooy 0w N

Lecture Topics:

* Dynamic Array
* Begin Linked List

Abstract Data Type (ADT)

* Abstract Data Type (ADT) — a mathematical model for data types

* Specifies:
* the type of data stored
* the operations supported on them
* the types of parameters of the operations.

* Why “abstract”?
* an implementation-independent view of the data type

10

Dynamic Arrays

* Elements in an array are stored in a contiguous block of memory

* Allow random access (direct access)
e j.e., time to access the 15t element = time to access the last element
* By using array subscript ([]):

int* array = malloc (1000 * sizeof(int));
array[0] = 0;

array[999] 0;

11

Dynamic Arrays (cont.)

* Basic operations:

» get — Gets the value of the element stored at a given index in the array

 set — Sets/updates the value of the element stored at a given index in the
array

* insert — Inserts a new value into the array at a given index.

* Sometimes, dynamic array implementations limit insertion to a specific location in the
array, e.g. only at the end.

* remove — Removes an element at a given index from the array

* Sometimes, dynamic array implementations avoid moving elements up a spot by only
allowing the last element to be removed

12

Dynamic Arrays (cont.)

 Drawbacks:

* Fixed size, must be specified when the array is created
* For static array:
int array[50];
* For dynamic array:

int *array = malloc (50 * sizeof (int));

—>Need to allocate more memory if we need to store more data
* How?

* Dynamic array DS doesn’t have a fixed capacity
* Has a variable size and can grow as needed

13

Dynamic Arrays (cont.) pe—_] [

* Need to keep track of three things:
* data —underlying data storage array
* size —number of elements currently stored in the array
* capacity — number of elements data has space for before it must be resized

* How it works?
* An array of known capacity is maintained by the dynamic array DS.
* As elements are inserted, they are simply stored in data

* |If an element is inserted into the dynamic array, and there isn’t capacity for it
in the underlying data storage array (data), the capacity of the underlying
data storage array is doubled. Then the new element is inserted into this
larger data storage array.

14

capacity

Dynamic Arrays

5
5 | 8
5 | 8 1

15

Inserting an element into dynarray

* Case 1: if size < capacity 5
* At least one free spot in data
* Insert the new element 5 8

e Case 2: if size == capacity

* No free spot in data

e Step 1: allocate a new array that has twice the capacity

» Step 2: copy all elements from data to new array

» Step 3: delete the old data array

» Step 4: Insert the new element

16

Another Example

* Insert 16 to the following dynamic array:

data \ new data
size = 4 5

capaclity = 4 13

31

* Step 1: allocate a new array that has twice the capacity

17

Another Example

* Insert 16 to the following dynamic array:

data \ new data
size = 4 I Tee— - 5

capacity = 4 I 113
CH *18
31 e - 31

 Step 2: copy all elements from data to new array

18

Another Example

* |Insert 16 to the following dynamic array:

data new data
size = 4 \ 5
capacity = B 13

8

31

e Step 3: delete the old data array and update data

19

Another Example

* Insert 16 to the following dynamic array:

data -H\\h
size = 8 5

capacity = 8 13

31
16

e Step 4: Insert the new element

20

Lecture Topics:

* Function Pointers
* Dynamic Array
* Begin Linked List

21

struct node {

Linked List voidr val;

struct node* next; J

b I' \lr

Node

* Linear Data Structure

* Elements in a linked list are stored in nodes and chained together

* Not in contiguous memory
* Thus, no random access

* A linked list in which each node points only to the next link in the list
is known as a singly-linked list.

* E.g.
val=1 » val=2 *l val=3 ——*@

Head

22

Linked List

* Always contains as many nodes as it has stored values
 Add an element = allocate a node, add it to the list
* Remove an element =2 free the node from the list

* Many forms of linked list:
* Keeps track only of the first element in the list, known as head

NULL

23

Linked List

* Many forms of linked list:
* Keeps track only of the first element in the list, known as head
» Keeps track of both the head of the list and the tail, or last element

NULL

24

Linked List

* Many forms of linked list:
* Keeps track only of the first element in the list, known as head
» Keeps track of both the head of the list and the tail, or last element

* Each node keeps track of both the next link and the previous link in the list,
known as a doubly-linked list

' l

NULL NULL
25

Linked List

* Many forms of linked list:
* Keeps track only of the first element in the list, known as head
» Keeps track of both the head of the list and the tail, or last element

* Each node keeps track of both the next link and the previous link in the list,
known as a doubly-linked list

* Last node points to the first node, known as circular-linked list

pesi—o 2| —{]| —[3]]—
> :

26

Linked List

* Many forms of linked list:

* With sentinels, which are special
nodes to designate the front/end of
the list

* E.g.: a doubly-linked list using both front
and back sentinels

NULL *— &

XXX

27

NULL

XXX

