
COLLEGE OF ENGINEERING School of Electrical Engineering 
and Computer Science

• Manipulating data in

memory

• Pointers
• And how they differ from 

references

12/7/2020 CS 161

CS 161
Introduction to CS I

Lecture 14



Week 5 Tips

• Midterm #2 will be cumulative
• Pick up Midterm #1 review your answers and the solutions
• Pick up (bring ID) at KEC 1148 by 2/14, or after that from my office 

• Variable shadowing: good to know about so you can read 
and trace through code, not recommended style

• Assignment 3 questions?
• Next Monday: guest instructor for lecture + 

no office hours for Dr. Wagstaff

2/7/2020 CS 161 2



Passing arguments to functions
• int v = 3;

• void fn(int w);

• void fn2(int& w);

• Pass by value: make a copy
• fn(v);

• Pass by reference: pass the address of the variable
• fn2(v);   /* NOT fn2(&v); */

2/7/2020 CS 161 3



Your turn: predict the output
1. void get_max(int a, int b, int& m) {

2. m = (a < b) ? a : b;  /* ternary/conditional operator */

3. }

4. int main() {

5. int f = 17, g = 19, mx = -1;

6. get_max(f, g, mx);    

7. cout << mx << endl; 

8. return 0;

9. }

2/7/2020 CS 161 4



Your turn: predict the output
1. void get_max(int a, int b, int& m) {

2. m = (a < b) ? a : b;  /* ternary/conditional operator */

3. }

4. int main() {

5. int f = 17, g = 19, mx = -1;

6. get_max(f, g, mx);    

7. cout << mx << endl; 

8. return 0;

9. }

2/7/2020 CS 161 5

17
(be sure you read 
the code!)



Why pass arguments by reference?

• Consumes less space: no need to make a copy
• (As is done when passing by value)
• This matters more when you work with large objects

• Slightly faster: no need to make a copy
• **** Since you can modify their values in the function,

this is one way to get multiple results from one function

2/7/2020 CS 161 6



Pass multiple arguments by reference
1. void split_string(string s, int i,
2. string& s1, string& s2) {
3. s1 = s.substr(0, i);    /* get from index 0 to i-1 */
4. s2 = s.substr(i);       /* get from index i to end */
5. }
6. int main() {
7. string input, first_part, second_part;
8. cin >> input;
9. split_string(input, 3, first_part, second_part);
10. cout << input << " : " << first_part << ", "
11. << second_part << endl;
12. return 0;
13.}

2/7/2020 CS 161 7



Pointers!
• Pointer = variable that stores a memory location (address)
• Examples:

• char* cptr;
• int* iptr;

• If not initialized, could point to invalid memory location
• You could write over your own data by accident
• You could also get a segmentation fault (what does this mean?)

• Good practice:
• char* cptr = NULL;
• int* iptr = NULL;

2/7/2020 CS 161 8



Review: Pass by reference
1. void compute_sum(int a, int b, int& s) {

2. s = a + b; 

3. }

4. int main() {

5. int x = 2, y = 3, sum = 0;

6. compute_sum(x, y, sum);    /* no &sum in function call */

7. cout << sum << endl; 

8. return 0;

9. }

2/7/2020 CS 161 9



Pass arguments as pointers
1. void compute_sum(int a, int b, int* s) {

2. *s = a + b; /* note *s to dereference */

3. }

4. int main() {

5. int x = 2, y = 3, sum = 0;

6. compute_sum(x, y, &sum);    /* note &sum in call */
7. cout << sum << endl; 

8. return 0;

9. }

2/7/2020 CS 161 10

2

3
Addr1

Addr2

&x
x

&y
y

0
Addr3 &sum

sum



Pass arguments as pointers
1. void compute_sum(int a, int b, int* s) {

2. *s = a + b; /* note *s to dereference */

3. }

4. int main() {

5. int x = 2, y = 3, sum = 0;

6. compute_sum(x, y, &sum); /* note &sum (NOT *sum) */

7. cout << sum << endl; 

8. return 0;

9. }

2/7/2020 CS 161 11

2

3
Addr1

Addr2

&x
x

&y
y

5
Addr3 &sum

sum

2

3
Addr4

Addr5

&a
a

&b
b

&s
sAddr3

Addr6



Pass arguments by reference (compare)
1. void compute_sum(int a, int b, int& s) {

2. s = a + b; 

3. }

4. int main() {

5. int x = 2, y = 3, sum = 0;

6. compute_sum(x, y, sum);    /* no &sum in function call */

7. cout << sum << endl; 

8. return 0;

9. }

2/7/2020 CS 161 12

2

3
Addr1

Addr2

&x
x

&y
y

5
Addr3 &sum

sum

2

3
Addr4

Addr5

&a
a

&b
b

&sum
sum



Memory operators
• & and * can be used to specify data types

• int& z = n;   /* declare a reference (alias) */
• int* p;   /* declare a pointer */

• & and * can also be used as operators in expressions to 
perform actions
• &: address-of
• p = &n;
• &n = 5234;  /* not allowed! (what would it mean?) */

• *: dereference (value-of): access the value at memory address
• cout << *p << endl; /* read */
• *p = 27; /* write/change */

2/7/2020 CS 161 13



"It Was A Dark and Stormy Pointer": A Play

• int* witch;
• witch = NULL;
• int cat = 7;
• int dog = 3;
• int mouse = 1;
• cat = dog + mouse;
• mouse *= 2;

2/7/2020 CS 161 14

• witch = &cat; /* address-of */
• *witch = 5;
• dog = *witch;  /* dereference */
• witch = &mouse;
• *witch = cat;



References versus Pointers
• Do not confuse "reference" (a data type) with "pass by reference" 

(something that happens when you call a function)
• Reference: an alias to some variable (permanent)
• int& r = s;
• Can assign new values to r (which is s), but cannot make r be an alias

to another variable later
• Must be initialized when declared

• Pointer: stores the address of some variable
• int* p = &s;
• Can change what address r contains (where it points to) anytime
• Can be declared, then initialized later

2/7/2020 CS 161 15



What vocabulary did we learn today?

• Pointers
• & (address-of) operator
• * (dereference) operator

2/7/2020 CS 161 16



What ideas and skills did we learn today?

• How to declare pointers
• How to pass pointers as function arguments
• How to trace through memory values when pointers are 

used

2/7/2020 CS 161 17



Week 5 nearly done

q Attend lab (laptop required)
q Read Rao Lesson 8 (pp. 177-186) – pointers and memory

and https://www.geeksforgeeks.org/pointers-vs-references-cpp/

q Finish up Assignment 3 (due Sunday, Feb. 9)

Guest lecture on Monday!  

2/7/2020 CS 161 18

https://www.geeksforgeeks.org/pointers-vs-references-cpp/

