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Introduction to CS |
Lecture 15

* How does memory work in a

C++ program?
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About Me

* 6" year at OSU, got my Bachelor Degree in Spring, 2018
* |Involved in CS 16X since Fall 2017

e Taught CS 161 last term
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Week 6 Tips

* Lab 6 — posted
* Revisit pass by reference
* Practice on pass by
* Implementing Hangman
e Memory model
e Study session this week
* Thursday 6-7pm at LINC 268

* Worksheet 6 is posted on the website
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Assignment 4: Text Surgeon

* Read in a line of text from the user, and perform analysis
and manipulation of that string
* Provides practice with
e String functions
e 1-dimensional arrays
e C-style strings
* Dynamic memory allocation

* Design Document is due Feb. 16 — go for it!
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Review: References and Pointers

 Declare variables:

e Reference: ints z = n; I I o Talias tow TRV
* Pointer: e Ne — g IR the address SRR
* Operators (perform actions):
e &: address-of
O = CanlE
e &n = 5234; /* not allowed! (what would it mean?) */
« *:dereference (value-of): access the value at memory address
s int g = *p; /* read */
e *p = 27; /* write/change */
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References versus Pointers

* Do not confuse "reference" (a data type) with "pass by reference"
(something that happens when you call a function)

» Reference: an alias to some variable (permanent)
* ] iSRG = o
e Can assign new values to r (whichis s), but cannot make r be an alias
to another variable later
* Must be initialized when declared
e Pointer: stores the address of some variable
S L0 e el = (G
e Can change what address r contains (where it points to) anytime
 Can be declared, then initialized later
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@ Pointer activity

&r = Addrl

1.int r = 17; &s = Addrz

-10; .
lne |r |s Ja_|*a___

3. int* g = NULL;

2. 1nt s

0O N oo ur b W
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@ Pointer activity

&r = Addrl

.int r = 17; &s = Addrz

-10; :
. ) tne |r s Ja___|*q
. int* g = NULL; 17 -10 0 X

. g = &r;

. 1lnt s

S N e

0O N oo ur b W
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@ Pointer activity

&r = Addrl
Lint T o= 17: &s = Addr?2
3. int* g = NULL; 17 -10 0 X
4. q = &r; 17 -10 Addrl 17
5. r = =-5;

0O N oo ur b W
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@ Pointer activity

&r = Addrl
Lint T o= 17: &s = Addr?2
3. int* g = NULL; 3 17 -10 0 X
4. q = &r; 4 17 -10 Addrl 17
5. r = -5; 5 -5 -10 Addrl -5
6. *q = 42; 6
7
8
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@ Pointer activity

&r = Addrl
1.int r = 17; &s = Addrz
2.1 = =-10;
Lt s ’ ne  |r |s  Ja__|*a__

3. int* g = NULL; - 17 0 5 -
4. g = &r; 4 17 10 Addri 17
SO0.r = —=5; 5 -5 -10 Addr1l -5
6. *q = 42; 6 42 -10 Addr1 42
7. g = &s; 7

8
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@ Pointer activity

. 1lnt s

O J o6 U~ WD

. 1lnt r =

. int* g =
. g = &r;
. r = -5;
. *q = 42;

&S,

Q
I
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-10;

NULL;

Line [
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17
17
-5

42
42

&r

&S

= Addrl
= Addr?

s o 'a
-10 0 X

-10
-10
-10
-10

Addrl
Addrl
Addrl
Addr2
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@ Pointer activity

. 1lnt s

O J o6 U~ WD

. 1lnt r =

. int* g =
. g = &r;
. r = -5;
. *q = 42;

&S,

Q
I
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17;
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NULL;
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17
17
-5

42
42
42

&r

&S

= Addrl
= Addr?

s o 'a
-10 0 X

-10
-10
-10
-10
-9

Addrl
Addrl
Addrl
Addr2
Addr2
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Passing pointers into functions

1Nt Sl = o8 ; int* p = &vy;
vORRC A N(1int g void pfnl (int* qg);
volid fn2 (int& w) ; void pfn2 (int*& q);
Pass by value: make a copy: T -
* Same for pointers: make a copy of the address inside the pointer variable;
changes to g do not change p pfnl (p) ;
Pass by reference: pass the address of the variable : fn2 (v) ;
* Same for pointers: pass the address of the pointer variable;
changes to g DO change p pfn2 (p) ;
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Challenge questions

 What if you made a pointer (p2) that points to a pointer (p1) that points
to anint (x)?
* What would the picture look like?
* Write the code for this picture.

e Can you make this same picture for references?
 What if you had two references, rl and r2?
int var = 50;
int &rl = var;
int &2 =var; You cannot say: int &&r2 = var; 50

var, rl, r2

2/10/2020 CS 161 15



A2 .
38\ Oregon State University
" College of Engineering

Memory Model/Layout

high
address > command-line arguments
and environment variables
stack
heap
uninitialized mmagze:x;oczero
data(bss) y
data program file by
low text exec
address
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What we have seen so far: N colegolingincerng
Variables vs. Pointers

* Value o

—Values stored directly
—Copy of value is passed

int i, j=2;

Addr2 <—— &j

1=7;
* Pointer : | | Addr2<+—— i
— Address to variable is stored \ T &
— Copy of address is passed v 7 - j
SN = NUTTASEY)

g Addr2 < &j
i=&7;
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Stack — Static Memory

* Stack

* Variables known in advance
(global/local variables, constants),
always allocated at compile time

* Functions have their own stack
frame

* When a function ends, the stack
frame collapses and cleans up the
memory for you
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What if we don’t have the j?

* We need to create the address space
* How do we do this?
- new type;
* For example:
int, *i = PN

i = new int; //new returns an address
5 =R
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Heap — Dynamic Memory

* Heap

* Variables defined at runtime (use new
keyword), do not need to be known in
advance

* Variables declared dynamically in a
function do not disappear when the
function ends as they are on the heap
and not the function stack

* Need to free dynamic memory when
done with it, otherwise memory leaks
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Static vs. Dynamic

* Static
. . 6_ o k
 Assign address of variable ,Addr2 | Stac
. . . *i\Addr1<— &i
int *1i=NULL, 73j=2; \
i=&7; 2 < j Stack
. Addr2 €——— &

* Dynamic
* Create memory Addr2€—1  stack
e Assign memory to pointer *i\Addr1<— &i
THAT O W RSN W DI, N 2 Heap
* L Addr2
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How to avoid Memory Leaks? O it
A: Deleting items from the heap

e Delete operator: delete

e (delete does not clear the memory contents, just lets it be reused)

For example:
int main () {
ints*ig= NULK;
i = new int;
BN = -
delete 1i;
i = NULL; // set the pointer back to NULL
return O0;
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Segmentation Fault (aka segfault)

Segmentation fault (core dumped)
 Something that causes programs to crash

e Often caused by program trying to read or write an illegal memory
location

For example, what’s wrong with this:
int main () {
EREET A1 = N T
i = new int; //if forget this, segfault
R ) -
delete 1i;

i = NULL; // set the pointer to NULL
return 0;

}
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Memory allocation tips

* new can fail — throws exception
after delete, set your ptr to NULL (explicitly)
* you can delete a NULL ptr with no adverse effects

* Gotchas:
* forget to delete: memory leak
» forget to set to NULL: dangling pointers

tool: valgrind
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What vocabulary did we learn today?

e Static memory

* Dynamic memory

e Stack

* Heap

* Segmentation fault

* Dynamic memory operators: new and delete
e Memory leak

* Dangling pointer
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What ideas and skills did we learn today?

* Memory model: where the stack and the heap are
* How to dynamically allocate memory

 How to delete dynamic memory

 How to check for memory leaks (valgrind)
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Week 6 begins!

1 Attend lab (laptop required)
] Read Rao Lesson 8 (pp. 187-204)

J Start design for Assignment 4 (due Sunday, Feb. 16)
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