
COLLEGE OF ENGINEERING School of Electrical Engineering
and Computer Science

• How does memory work in a

C++ program?

12/10/2020 CS 161

CS 161
Introduction to CS I

Lecture 15

About Me

• 6th year at OSU, got my Bachelor Degree in Spring, 2018
• Involved in CS 16X since Fall 2017
• Taught CS 161 last term

2/10/2020 CS 161 2

Week 6 Tips

• Lab 6 – posted
• Revisit pass by reference
• Practice on pass by
• Implementing Hangman

• Memory model

• Study session this week
• Thursday 6-7pm at LINC 268
• Worksheet 6 is posted on the website

2/10/2020 CS 161 3

Assignment 4: Text Surgeon

• Read in a line of text from the user, and perform analysis
and manipulation of that string

• Provides practice with
• String functions
• 1-dimensional arrays
• C-style strings
• Dynamic memory allocation

• Design Document is due Feb. 16 – go for it!

2/10/2020 CS 161 4

Review: References and Pointers
• Declare variables:
• Reference: int& z = n; /* z is an alias to n */

• Pointer: int* p = &n; /* p is the address of n */

• Operators (perform actions):
• &: address-of
• p = &n;
• &n = 5234; /* not allowed! (what would it mean?) */

• *: dereference (value-of): access the value at memory address
• int g = *p; /* read */
• *p = 27; /* write/change */

2/10/2020 CS 161 5

References versus Pointers
• Do not confuse "reference" (a data type) with "pass by reference"

(something that happens when you call a function)
• Reference: an alias to some variable (permanent)
• int& r = s;
• Can assign new values to r (which is s), but cannot make r be an alias

to another variable later
• Must be initialized when declared

• Pointer: stores the address of some variable
• int* p = &s;
• Can change what address r contains (where it points to) anytime
• Can be declared, then initialized later

2/10/2020 CS 161 6

Pointer activity

2/10/2020 CS 161 7

1. int r = 17;

2. int s = -10;

3. int* q = NULL;

&r = Addr1

&s = Addr2

Line r s q *q
3
4

5
6
7

8

Pointer activity

2/10/2020 CS 161 8

Line r s q *q
3 17 -10 0 X
4

5
6
7

8

1. int r = 17;

2. int s = -10;

3. int* q = NULL;

4. q = &r;

&r = Addr1

&s = Addr2

Pointer activity

2/10/2020 CS 161 9

Line r s q *q
3 17 -10 0 X
4 17 -10 Addr1 17

5
6
7

8

1. int r = 17;

2. int s = -10;

3. int* q = NULL;

4. q = &r;
5. r = -5;

&r = Addr1

&s = Addr2

Pointer activity

2/10/2020 CS 161 10

Line r s q *q
3 17 -10 0 X
4 17 -10 Addr1 17

5 -5 -10 Addr1 -5
6
7

8

1. int r = 17;

2. int s = -10;

3. int* q = NULL;

4. q = &r;
5. r = -5;

6. *q = 42;

&r = Addr1

&s = Addr2

Pointer activity

2/10/2020 CS 161 11

Line r s q *q
3 17 -10 0 X
4 17 -10 Addr1 17

5 -5 -10 Addr1 -5
6 42 -10 Addr1 42
7

8

1. int r = 17;

2. int s = -10;

3. int* q = NULL;

4. q = &r;
5. r = -5;

6. *q = 42;
7. q = &s;

&r = Addr1

&s = Addr2

Pointer activity

2/10/2020 CS 161 12

Line r s q *q
3 17 -10 0 X
4 17 -10 Addr1 17

5 -5 -10 Addr1 -5
6 42 -10 Addr1 42
7 42 -10 Addr2 -10

8

1. int r = 17;

2. int s = -10;

3. int* q = NULL;

4. q = &r;
5. r = -5;

6. *q = 42;
7. q = &s;

8. s++;

&r = Addr1

&s = Addr2

Pointer activity

2/10/2020 CS 161 13

Line r s q *q
3 17 -10 0 X
4 17 -10 Addr1 17

5 -5 -10 Addr1 -5
6 42 -10 Addr1 42
7 42 -10 Addr2 -10

8 42 -9 Addr2 -9

1. int r = 17;

2. int s = -10;

3. int* q = NULL;

4. q = &r;
5. r = -5;

6. *q = 42;
7. q = &s;

8. s++;

&r = Addr1

&s = Addr2

Passing pointers into functions
• int v = 3; int* p = &v;
• void fn1(int w); void pfn1(int* q);
• void fn2(int& w); void pfn2(int*& q);

• Pass by value: make a copy: fn1(v);
• Same for pointers: make a copy of the address inside the pointer variable;

changes to q do not change p pfn1(p);
• Pass by reference: pass the address of the variable: fn2(v);

• Same for pointers: pass the address of the pointer variable;
changes to q DO change p pfn2(p);

2/10/2020 CS 161 14

Challenge questions
• What if you made a pointer (p2) that points to a pointer (p1) that points

to an int (x)?
• What would the picture look like?
• Write the code for this picture.

• Can you make this same picture for references?
• What if you had two references, r1 and r2?
int var = 50;
int &r1 = var;
int &r2 = var;

152/10/2020 CS 161

50You cannot say: int &&r2 = var;
var, r1, r2

2/10/2020 CS 161 16

Memory Model/Layout

2/10/2020 CS 161 17

• Value
–Values stored directly
–Copy of value is passed
int i, j=2;
i=j;

• Pointer
– Address to variable is stored

*i
– Copy of address is passed
int *i = NULL, j=2;
i=&j;

2
Addr1

2
Addr2

&i

i

&j

j

Addr2
Addr1

2
Addr2

&i

i

&j

j

What we have seen so far:
Variables vs. Pointers

2/10/2020 CS 161 18

Stack – Static Memory
• Stack
• Variables known in advance

(global/local variables, constants),
always allocated at compile time

• Functions have their own stack
frame

• When a function ends, the stack
frame collapses and cleans up the
memory for you

2/10/2020 CS 161 19

What if we don’t have the j?

• We need to create the address space
• How do we do this?

- new type;
• For example:

int *i = NULL;
i = new int; //new returns an address
*i = 10;

2/10/2020 CS 161 20

Heap – Dynamic Memory
• Heap

• Variables defined at runtime (use new
keyword), do not need to be known in
advance

• Variables declared dynamically in a
function do not disappear when the
function ends as they are on the heap
and not the function stack

• Need to free dynamic memory when
done with it, otherwise memory leaks

2/10/2020 CS 161 21

Static vs. Dynamic
• Static
• Assign address of variable
int *i=NULL, j=2;
i=&j;

• Dynamic
• Create memory
• Assign memory to pointer
int *i=new int;
*i=2;

Addr2
Addr1

Addr2

&i

i

2
&j

j

*i

Addr2
Addr1

Addr2

&i

i

2
*i

Stack

Stack

Stack

Heap

How to avoid Memory Leaks?
A: Deleting items from the heap
• Delete operator: delete
• (delete does not clear the memory contents, just lets it be reused)
For example:
int main () {

int *i = NULL;
i = new int;
*i = 2;
delete i;
i = NULL; // set the pointer back to NULL
return 0;

}

2/10/2020 CS 161 22

Segmentation Fault (aka segfault)

• Something that causes programs to crash
• Often caused by program trying to read or write an illegal memory

location
For example, what’s wrong with this:
int main () {

int *i = NULL;
i = new int; //if forget this, segfault
*i = 2;
delete i;
i = NULL; // set the pointer to NULL
return 0;

}

2/10/2020 CS 161 23

Memory allocation tips

• new can fail – throws exception
• after delete, set your ptr to NULL (explicitly)
• you can delete a NULL ptr with no adverse effects
• Gotchas:
• forget to delete: memory leak
• forget to set to NULL: dangling pointers

• tool: valgrind

2/10/2020 CS 161 24

What vocabulary did we learn today?

• Static memory
• Dynamic memory
• Stack
• Heap
• Segmentation fault
• Dynamic memory operators: new and delete
• Memory leak
• Dangling pointer
2/10/2020 CS 161 25

What ideas and skills did we learn today?

• Memory model: where the stack and the heap are
• How to dynamically allocate memory
• How to delete dynamic memory
• How to check for memory leaks (valgrind)

2/10/2020 CS 161 26

Week 6 begins!

q Attend lab (laptop required)
q Read Rao Lesson 8 (pp. 187-204)
q Start design for Assignment 4 (due Sunday, Feb. 16)

2/10/2020 CS 161 27

