COLLEGE OF ENGINEERING | 200 oo acel bngineering

CS 161

Introduction to CS |
Lecture 15

* How does memory work in a

C++ program?

2/10/2020 CS 161 1

A2 .
8 Oregon StateUniversity
College of Engineering
About Me

* 6" year at OSU, got my Bachelor Degree in Spring, 2018
* |Involved in CS 16X since Fall 2017

e Taught CS 161 last term

2/10/2020 CS 161 2

Week 6 Tips

* Lab 6 — posted
* Revisit pass by reference
* Practice on pass by
* Implementing Hangman
e Memory model
e Study session this week
* Thursday 6-7pm at LINC 268

* Worksheet 6 is posted on the website

2/10/2020 CS 161

PN .
8 Oregon StateUniversity
College of Engineering

PN .
8 Oregon StateUniversity
College of Engineering

Assignment 4: Text Surgeon

* Read in a line of text from the user, and perform analysis
and manipulation of that string
* Provides practice with
e String functions
e 1-dimensional arrays
e C-style strings
* Dynamic memory allocation

* Design Document is due Feb. 16 — go for it!

2/10/2020 CS 161 4

PN .
38\ Oregon State University
College of Engineering

Review: References and Pointers

 Declare variables:

e Reference: ints z = n; I I o Talias tow TRV
* Pointer: e Ne — g IR the address SRR
* Operators (perform actions):
e &: address-of
O = CanlE
e &n = 5234; /* not allowed! (what would it mean?) */
« *:dereference (value-of): access the value at memory address
s int g = *p; /* read */
e *p = 27; /* write/change */

2/10/2020 CS 161 5

7aNe .
38\ Oregon State University
@ College of Engineering

References versus Pointers

* Do not confuse "reference" (a data type) with "pass by reference"
(something that happens when you call a function)

» Reference: an alias to some variable (permanent)
*] iSRG = o
e Can assign new values to r (whichis s), but cannot make r be an alias
to another variable later
* Must be initialized when declared
e Pointer: stores the address of some variable
S L0 e el = (G
e Can change what address r contains (where it points to) anytime
 Can be declared, then initialized later

2/10/2020 CS 161 6

0 Oregon State University
Colfl;ege of Engineering
@ Pointer activity

&r = Addrl

1.int r = 17; &s = Addrz

-10; .
lne |r |s Ja_|*a___

3. int* g = NULL;

2. 1nt s

0O N oo ur b W

2/10/2020 CS 161 7

0 Oregon State University
Colfl;ege of Engineering
@ Pointer activity

&r = Addrl

.int r = 17; &s = Addrz

-10; :
.) tne |r s Ja___|*q
. int* g = NULL; 17 -10 0 X

. g = &r;

. 1lnt s

S N e

0O N oo ur b W

2/10/2020 CS 161 8

0 Oregon State University
Colfl;ege of Engineering
@ Pointer activity

&r = Addrl
Lint T o= 17: &s = Addr?2
3. int* g = NULL; 17 -10 0 X
4. q = &r; 17 -10 Addrl 17
5. r = =-5;

0O N oo ur b W

2/10/2020 CS 161 9

0 Oregon State University
College of Engineering
@ Pointer activity

&r = Addrl
Lint T o= 17: &s = Addr?2
3. int* g = NULL; 3 17 -10 0 X
4. q = &r; 4 17 -10 Addrl 17
5. r = -5; 5 -5 -10 Addrl -5
6. *q = 42; 6
7
8

2/10/2020 CS 161 10

pan: .
B8 Oregon State University
College of Engineering

@ Pointer activity

&r = Addrl
1.int r = 17; &s = Addrz
2.1 = =-10;
Lt s ’ ne |r |s Ja__|*a__

3. int* g = NULL; - 17 0 5 -
4. g = &r; 4 17 10 Addri 17
SO0.r = —=5; 5 -5 -10 Addr1l -5
6. *q = 42; 6 42 -10 Addr1 42
7. g = &s; 7

8

2/10/2020 CS 161 11

@ Pointer activity

. 1lnt s

O J o6 U~ WD

. 1lnt r =

. int* g =
. g = &r;
. r = -5;
. *q = 42;

&S,

Q
I

2/10/2020

17;
-10;

NULL;

Line [

O N oo U B W

CS 161

17
17
-5

42
42

&r

&S

= Addrl
= Addr?

s o 'a
-10 0 X

-10
-10
-10
-10

Addrl
Addrl
Addrl
Addr2

A2 .
38\ Oregon State University
i%?cdbﬁﬁﬁgmam;

17
5
42
-10

12

@ Pointer activity

. 1lnt s

O J o6 U~ WD

. 1lnt r =

. int* g =
. g = &r;
. r = -5;
. *q = 42;

&S,

Q
I

2/10/2020

17;
-10;

NULL;

Line [

O N oo U B W

CS 161

17
17
-5

42
42
42

&r

&S

= Addrl
= Addr?

s o 'a
-10 0 X

-10
-10
-10
-10
-9

Addrl
Addrl
Addrl
Addr2
Addr2

A2 .
38\ Oregon State University
i%?cdbﬁﬁﬁgmam;

17
-5
42
-10
-9

13

PN .
38\ Oregon State University
College of Engineering

Passing pointers into functions

1Nt Sl = o8 ; int* p = &vy;
vORRC A N(1int g void pfnl (int* qg);
volid fn2 (int& w) ; void pfn2 (int*& q);
Pass by value: make a copy: T -
* Same for pointers: make a copy of the address inside the pointer variable;
changes to g do not change p pfnl (p) ;
Pass by reference: pass the address of the variable : fn2 (v) ;
* Same for pointers: pass the address of the pointer variable;
changes to g DO change p pfn2 (p) ;

2/10/2020 CS 161 14

PN .
8 Oregon StateUniversity
College of Engineering

Challenge questions

 What if you made a pointer (p2) that points to a pointer (p1) that points
to anint (x)?
* What would the picture look like?
* Write the code for this picture.

e Can you make this same picture for references?
 What if you had two references, rl and r2?
int var = 50;
int &rl = var;
int &2 =var; You cannot say: int &&r2 = var; 50

var, rl, r2

2/10/2020 CS 161 15

A2 .
38\ Oregon State University
" College of Engineering

Memory Model/Layout

high
address > command-line arguments
and environment variables
stack
heap
uninitialized mmagze:x;oczero
data(bss) y
data program file by
low text exec
address

2/10/2020 CS 161 16

0 OregonStateUni.Vﬂ'sit%f
What we have seen so far: N colegolingincerng
Variables vs. Pointers

* Value o

—Values stored directly
—Copy of value is passed

int i, j=2;

Addr2 <—— &j

1=7;
* Pointer : | | Addr2<+—— i
— Address to variable is stored \ T &
— Copy of address is passed v 7 - j
SN = NUTTASEY)

g Addr2 < &j
i=&7;

2/10/2020 CS 161 17

Stack — Static Memory

* Stack

* Variables known in advance
(global/local variables, constants),
always allocated at compile time

* Functions have their own stack
frame

* When a function ends, the stack
frame collapses and cleans up the
memory for you

2/10/2020 CS 161

high

\4

address

low
address

Y

uninitialized
data(bss)

initialized
data

text

PN .
Oregon State University
E

gy College of Engineering

T

s

I

command-line arguments
and environment variables

initialized to zero
by exec

read from
program file by
exec

18

Oregon State University
E5y College of Engineering
What if we don’t have the j?

* We need to create the address space
* How do we do this?
- new type;
* For example:
int, *i = PN

i = new int; //new returns an address
5 =R

2/10/2020 CS 161 19

Heap — Dynamic Memory

* Heap

* Variables defined at runtime (use new
keyword), do not need to be known in
advance

* Variables declared dynamically in a
function do not disappear when the
function ends as they are on the heap
and not the function stack

* Need to free dynamic memory when
done with it, otherwise memory leaks

2/10/2020 CS 161

high

gy College of Engineering

PN .
Oregon State University
E

address

low
address

Y

T

D

uninitialized
data(bss)

s

initialized
data

text

I

command-line arguments
and environment variables

initialized to zero
by exec

read from
program file by
exec

20

PN .
38\ Oregon State University
College of Engineering

Static vs. Dynamic

* Static
. . 6_ o k
 Assign address of variable ,Addr2 | Stac
. . . *i\Addr1<— &i
int *1i=NULL, 73j=2; \
i=&7; 2 < j Stack
. Addr2 €——— &

* Dynamic
* Create memory Addr2€—1 stack
e Assign memory to pointer *i\Addr1<— &i
THAT O W RSN W DI, N 2 Heap
* L Addr2

2/10/2020 CS 161 21

0 OregonStateUni.Vﬂ'sit%f
How to avoid Memory Leaks? O it
A: Deleting items from the heap

e Delete operator: delete

e (delete does not clear the memory contents, just lets it be reused)

For example:
int main () {
ints*ig= NULK;
i = new int;
BN = -
delete 1i;
i = NULL; // set the pointer back to NULL
return O0;

2/10/2020 CS 161 22

0ﬁ°~ Oregon State Universi
College of Engineett*ying
Segmentation Fault (aka segfault)

Segmentation fault (core dumped)
 Something that causes programs to crash

e Often caused by program trying to read or write an illegal memory
location

For example, what’s wrong with this:
int main () {
EREET A1 = N T
i = new int; //if forget this, segfault
R) -
delete 1i;

i = NULL; // set the pointer to NULL
return 0;

}

2/10/2020 CS 161 23

7aNe .
8 Oregon StateUniversity
@ College of Engineering

Memory allocation tips

* new can fail — throws exception
after delete, set your ptr to NULL (explicitly)
* you can delete a NULL ptr with no adverse effects

* Gotchas:
* forget to delete: memory leak
» forget to set to NULL: dangling pointers

tool: valgrind

2/10/2020 CS 161 24

PN .
38\ Oregon State University
College of Engineering

What vocabulary did we learn today?

e Static memory

* Dynamic memory

e Stack

* Heap

* Segmentation fault

* Dynamic memory operators: new and delete
e Memory leak

* Dangling pointer
2/10/2020 CS 161 25

PN .
38\ Oregon State University
College of Engineering

What ideas and skills did we learn today?

* Memory model: where the stack and the heap are
* How to dynamically allocate memory

 How to delete dynamic memory

 How to check for memory leaks (valgrind)

2/10/2020 CS 161 26

pan-N -
8 Oregon StateUniversity
College of Engineering
Week 6 begins!

1 Attend lab (laptop required)
] Read Rao Lesson 8 (pp. 187-204)

J Start design for Assignment 4 (due Sunday, Feb. 16)

2/10/2020 CS 161 27

